本文目录一览:
高二数学内容有哪些?
高二数学内容如下:
1、设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的,单调递增和单调递减的函数统称为单调函数。
2、在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA,nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率。
3、随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率。
4、正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=,l是以角作为圆心角时所对圆弧的长,r为半径。
5、常用逻辑语句,包括:命题、充分与必要条件、全称量词与存在量词等。
高二数学学什么内容?
高中数学最新百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高二数学知识点及公式有哪些?
高二数学知识点及公式有如下:
1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
高二数学知识点及公式是什么?
高二数学知识点及公式如下:
1、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
2、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。
3、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。
4、集合中元素的特征: 确定性、互异性、无序性 。
5、 空集是指不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集。
6、cosa*cosb=[cos(a+b)+cos(a-b)]/2。
7、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)。
高二数学知识点及公式有哪些?
高二数学知识点及公式是如下:
一、集合与函数
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
二、复合函数常见题型
(1)已知f(x)定义域为A,求f的定义域:实质是已知g(x)的范围为A,以此求出x的范围。
(2)已知f定义域为B,求f(x)的定义域:实质是已知x的范围为B,以此求出g(x)的范围。
(3)已知f定义域为C,求f的定义域:实质是已知x的范围为C,以此先求出g(x)的范围(即f(x)的定义域);然后将其作为h(x)的范围,以此再求出x的范围。
三、函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可是任意个。
四、偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。
五、奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。