本文目录一览:
算术平方根,平方根和立方根的区别或相关知识重点
平方根:若一个数的平方等于a,则这个数叫做a的平方根。
算术平方根:若一个正数的平方等于a,则这个数叫做a的算术平方根。
a平方根:±√a所以他可以是任何数, a的算术平方根:√a就不可能是负数了。 立方根:如果一个数的立方等于等于a,那么这个数就叫做a的立方根,他可能是正数,也可能是负数或零
二次根式 平方根 立方根总和知识点总结
第6课 数的开方与二次根式 〖知识点〗 平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化 〖大纲要求〗 1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。会求实数的平方根、算术平方根和立方根(包括利用计算器及查表); 2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简; 3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。 内容分析 1.二次根式的有关概念 (1)二次根式 式子 叫做二次根式.注意被开方数只能是正数或O. (2)最简二次根式 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式 化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式. 2.二次根式的性质 3.二次根式的运算 (1)二次根式的加减 二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并. (2)三次根式的乘法 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 二次根式的和相乘,可参照多项式的乘法进行. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式. (3)二次根式的除法 二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化. 〖考查重点与常见题型〗 1.考查平方根、算术平方根、立方根的概念。有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。 2.考查最简二次根式、同类二次根式概念。有关习题经常出现在选择题中。 3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。
平方根知识点有哪些?
平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
中被开方数的取值范围:被开方数a≥0
平方根性质:
①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根
牛顿迭代法:
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们先计算0.5(350+136161/350),结果为369.5。
然后我们再计算0.5(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且369²末尾数字为1。我们有理由断定369²=136161。
二次根号的知识点
1、二次根式定义
形如式子叫做二次根式;
二次根式必须满足:含有二次根号;被开方数a必须是非负数(含有,且有意义)。
①被开方数可以是数,也可以是单项式、多项式、分式等代数式;
②判断时一定要注意不要化简,一定要有意义。
2、最简二次根式
若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
①根号下无分母,分母中无根号;
②被开方数中没有能开方的因数或因式。
3、二次根式化简方法
根据被开方数不同,方法略有不同
化简依据:二次根式的性质,使被开方数转化为含有平方数(式)乘积的形式。
(1)整数:先分解质因数,化成完全平方数的乘积形式,再开方;
(2)分数:分子分母分别按整数化简;
(3)小数:先化成分数,再开方;
(4)带分数:先化成假分数,再开方;
(5)根数和(差)形式,先配方,再开方;
(6)含有字母的情况,要注意字母(被开方数)的正负性(分类讨论)。
(7)分母有理化
将含有无理数的分母转化成只含有有理数分母的过程,称之为分母有理化。
通常的方法:
①分母只含有单独一个根式的,方法是分子分母同乘以这个根式,使分母转化 成根式平方的形式(有理式)。
②如果分母是根式的和差形式,则是利用平方差公式,分子分母同乘以一个式 子,将分母含有无理数和有理数的组合数化为有理数。