本文目录一览:
高考数学知识点归纳
高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会 经验 的学生来说,无疑是个困难的想选择。下面是我整理的高考数学知识点,希望能够帮助大家!
高考数学知识点1
一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
二、平面向量和三角函数
对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
三、数列
数列这个板块,重点考两个方面:一个通项;一个是求和。
四、空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。
五、概率和统计
概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
六、解析几何
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题
同学们在最后的备考复习中,还应该把重点放在不等式计算的 方法 中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
高考数学直线方程知识点:什么是直线方程
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平 面相 交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
高考数学知识点2
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
-直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高考数学知识点3
第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我 总结 下面五类常考的题型,包括:
第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有答案,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
高考数学知识点4
(一)导数第一定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第一定义
(二)导数第二定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义
(三)导函数与导数
如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f¢(x)
(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f¢(x)
(2)f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x)0的解集与定义域的交集的对应区间为减区间
高考数学知识点5
一、排列
1定义
(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。
(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.
2排列数的公式与性质
(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1
规定:0!=1
二、组合
1定义
(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。
2比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。
排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。
三、排列组合与二项式定理知识点
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)
2.排列(有序)与组合(无序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题)间接法和去杂法等等
在求解排列与组合应用问题时,应注意:
(1)把具体问题转化或归结为排列或组合问题;
(2)通过分析确定运用分类计数原理还是分步计数原理;
(3)分析题目条件,避免“选取”时重复和遗漏;
(4)列出式子计算和作答.
经常运用的数学思想是:
①分类讨论思想;②转化思想;③对称思想.
4.二项式定理知识点:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。
6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。
高考数学知识点归纳相关 文章 :
★ 高考数学知识点归纳总结大全
★ 高考数学知识点总结归纳
★ 高考数学知识点整理
★ 高考数学知识点总结大全
★ 高考数学知识点总结大全
★ 高考数学知识点总结最新整理
★ 最新高考数学知识点归纳总结
★ 高考数学知识点归纳总结
★ 高考数学知识点归纳总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
中职升高职(三校生高考)数学考什么内容?
中职升高职(三校生高考)数学考:
第一章:基础知识(数与式,方程与方程组,指数与对数、简易逻辑)第二章:集合,不等式与不等式组。第三章:函数。第四章:三角函数。第五章:平面向量。第六章:直线、二次曲线。第七章:多面体和旋转体。第八章:数列。第九章:复数。
数学(mathematics),简称maths(英国英语)或math(美国英语),是研究现实世界空间形式与数量关系的学科。
从某种角度看属于形式科学的一种.分为高等数学和初等数学。也有把高中复杂的集合、函数、代数、几何称为中等数学。
数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
三校生高考必背内容
(一)古文(10篇)
1 《劝学》 荀子
君子曰:学不可以已。
青,取之于蓝,而青于蓝;冰,水为之,而寒于水。木直中绳,輮以为轮,其曲中规。虽有槁暴,不复挺者,輮使之然也。故木受绳则直,金就砺则利,君子博学而日参省乎己,则知明而行无过矣。
吾尝终日而思矣,不如须臾之所学也;吾尝跂而望矣,不如登高之博见也。登高而招,臂非加长也,而见者远;顺风而呼,声非加疾也,而闻者彰。假舆马者,非利足也,而致千里;假舟楫者,非能水也,而绝江河。君子生非异也,善假于物也。
积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不能十步;驽马十驾,功不在舍。锲而舍之,朽木不折;锲而不舍,金石可镂。蚓无爪牙之利,筋骨之强,上食埃土,下饮黄泉,用心一也。蟹六跪而二螯,非蛇鳝之穴无可寄托者,用心躁也。
2 《过秦论》 贾谊
及至始皇,奋六世之余烈,振长策而御宇内,吞二周而亡诸侯,履至尊而制六合,执敲扑而鞭笞天下,威振四海。南取百越之地,以为桂林、象郡;百越之君,俯首系颈,委命下吏。乃使蒙恬北筑长城而守藩篱,却匈奴七百余里;胡人不敢南下而牧马,士不敢弯弓而抱怨。于是废先王之道,焚百家之言,以愚黔首;隳名城,杀豪杰;收天下之兵,聚之咸阳,销锋镝,铸以为金人十二,以弱天下之民。然后践华为城,因河为池,据亿丈之城,临不测之渊,以为固。良将劲弩守要害之处,信臣精卒陈利兵而谁何。天下已定,始皇之心,自以为关中之固,金城千里,子孙帝王万世之业也。
始皇既没,余威震于殊俗。然陈涉瓮牖绳枢之子,氓隶之人,而迁徙之徒也;才能不及中人,非有仲尼、墨翟之贤,陶朱、猗顿之富;蹑足行伍之间,而倔起阡陌之中,率疲弊之卒,将数百之众,转而攻秦;斩木为兵,揭竿为旗,天下云集响应,赢粮而景从。山东豪俊逐并起而亡秦族矣。
且夫天下非小弱也,雍州之地,崤函之固,自若也。陈涉之位,非尊于齐、楚、燕、赵、韩、魏、宋、卫、中山之君也;锄耰棘矜,非铦于钩戟长铩也;谪戍之众,非抗于九国之师也;深谋远虑,行军用兵之道,非及向时之士也。然而成败异变,功业相反也。试使山东之国与陈涉度长絜大,比权量力,则不可同年而语矣。然秦以区区之地,致万乘之势,序八州而朝同列,百有余年矣;然后以六合为家,崤函为宫;一夫作难而七庙隳,身死人手,为天下笑者,何也?仁义不施而攻守之势异也。
3 《师说》 韩愈
古之学者必有师。师者,所以传道受业解惑也。人非生而知之者,孰能无惑?惑而不从师,其为惑也,终不解矣。生乎吾前,其闻道也固先乎吾,吾从而师之;生乎吾后,其闻道也亦先乎吾,吾从而师之。吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也。
嗟乎!师道之不传也久矣!欲人之无惑也难矣!古之圣人,其出人也远矣,犹且从师而问焉;今之众人,其下圣人也亦远矣,而耻学于师。是故圣益圣,愚益愚。圣人之所以为圣,愚人之所以为愚,其皆出于此乎?爱其子,择师而教之;于其身也,则耻师焉,惑矣。彼童子之师,授之书而习其句读者,非吾所谓传其道解其惑者也。句读之不知,惑之不解,或师焉,或不焉,小学而大遗,吾未见其明也。巫医乐师百工之人,不耻相师。士大夫之族,曰师曰弟子云者,则群聚而笑之。问之,则曰:“彼与彼年相若也,道相似也,位卑则足羞,官盛则近谀。”呜呼!师道之不复,可知矣。巫医乐师百工之人,君子不齿,今其智乃反不能及,其可怪也欤!
圣人无常师。孔子师郯子、苌弘、师襄、老聃。郯子之徒,其贤不及孔子。孔子曰:三人行,则必有我师。是故弟子不必不如师,师不必贤于弟子,闻道有先后,术业有专攻,如是而已。
李氏子蟠,年十七,好古文,六艺经传皆通习之,不拘于时,学于余。余嘉其能行古道,作《师说》以贻之。
4 《阿房宫赋》 杜牧
六王毕,四海一。蜀山兀,阿房出。覆压三百余里,隔离天日。骊山北构而西折,直走咸阳。二川溶溶,流入宫墙。五步一楼,十步一阁;廊腰缦回,檐牙高啄;各抱地势,钩心斗角。盘盘焉,囷囷焉,蜂房水涡,矗不知其几千万落。长桥卧波,未云何龙?复道行空,不霁何虹?高低冥迷,不知西东。歌台暖响,春光融融;舞殿冷袖,风雨凄凄。一日之内,一宫之间,而气候不齐。
妃嫔媵嫱,王子皇孙,辞楼下殿,辇来于秦。朝歌夜弦,为秦宫人。明星荧荧,开妆镜也;绿云扰扰,梳晓鬟也;渭流涨腻,弃脂水也;烟斜雾横,焚椒兰也。雷霆乍惊,宫车过也;辘辘远听,杳不知其所之也。一肌一容,尽态极妍,缦立远视,而望幸焉;有不得见者三十六年。燕赵之收藏,韩魏之经营,齐楚之精英,几世几年,剽掠其人,倚叠如山;一旦不能有,输来其间。鼎铛玉石,金块珠砾,弃掷逦迤,秦人视之,亦不甚惜。
嗟乎!一人之心,千万人之心也。秦爱纷奢,人亦念其家。奈何取之尽锱铢,用之如泥沙?使负栋之柱,多于南亩之农夫;架梁之椽,多于机上之工女;钉头磷磷,多于在庾之粟粒;瓦缝参差,多于周身之帛缕;直栏横槛,多于九土之城郭;管弦呕哑,多于市人之言语。使天下之人,不敢言而敢怒。独夫之心,日益骄固。戍卒叫,函谷举。楚人一炬,可怜焦土!
呜呼!灭六国者六国也,非秦也;族秦者秦也,非天下也。嗟夫!使六国各爱其人,则足以拒秦;使秦复爱六国之人,则递三世可至万世而为君,谁得而族灭也?秦人不暇自哀,而后人哀之;后人哀之而不鉴之,亦使后人而复哀后人也。
5 《六国论》 苏洵
六国破灭,非兵不利,战不善,弊在赂秦。赂秦而力亏,破灭之道也。或曰:六国互丧,率赂秦耶?曰:不赂者以赂者丧。盖失强援,不能独完。故曰弊在赂秦也。
秦以攻取之外,小则获邑,大则得城。较秦之所得,与战胜而得者,其实百倍;诸侯之所亡,与战败而亡者,其实亦百倍。则秦之所大欲,诸侯之所大患,固不在战矣。思厥先祖父,暴霜露,斩荆棘,以有尺寸之地。子孙视之不甚惜,举以予人,如弃草芥。今日割五城,明日割十城,然后得一夕安寝。起视四境,而秦兵又至矣。然则诸侯之地有限,暴秦之欲无厌,奉之弥繁,侵之愈急。故不战而强弱胜负已判矣。至于颠覆,理固宜然。古人云:“以地事秦,犹抱薪救火,薪不尽,火不灭。”此言得之。
齐人未尝赂秦,终继五国迁灭,何哉?与嬴而不助五国也。五国既丧,齐亦不免矣。燕赵之君,始有远略,能守其土,义不赂秦。是故燕虽小国而后亡,斯用兵之效也。至丹以荆卿为计,始速祸焉。赵尝五战于秦,二败而三胜。后秦击赵者再,李牧连却之。洎牧以谗诛,邯郸为郡,惜其用武而不终也。且燕赵处秦革灭殆尽之际,可谓智力孤危,战败而亡,诚不得已。向使三国各爱其地,齐人勿附于秦,刺客不行,良将犹在,则胜负之数,存亡之理,当与秦相较,或未易量。
呜呼!以赂秦之地封天下之谋臣,以事秦之心礼天下之奇才,并力西向,则吾恐秦人食之不得下咽也。悲夫!有如此之势,而为秦人积威之所劫,日削月割,以趋于亡。为国者无使为积威之所劫哉!
夫六国与秦皆诸侯,其势弱于秦,而犹有可以不赂而胜之之势。苟以天下之大,而从六国破亡之故事,是又在六国下矣。
6 《游褒禅山记》 王安石
其下平旷,有泉侧出,而记游者甚众,——所谓前洞也。由山以上五六里,有穴窈然,入之甚寒,问其深,则其好游者不能穷也,——谓之后洞。余与四人拥火以入,入之愈深,其进愈难,而其见愈奇。有怠而欲出者,曰:“不出,火且尽。”遂与之俱出。盖余所至,比好游者尚不能十一,然视其左右,来而记之者已少。盖其又深,则其至又加少矣。方是时,余之力尚足以入,火尚足以明也。既其出,则或咎其欲出者,而余亦悔其随之而不得极夫游之乐也。
于是余有叹焉。古人之观于天地、山川、草木、虫鱼、鸟兽,往往有得,以其求思之深而无不在也。夫夷以近,则游者众;险以远,则至者少。而世之奇伟、瑰怪、非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也。有志矣,不随以止也,然力不足者,亦不能至也。有志与力,而又不随以怠,至于幽暗昏惑而无物以相之,亦不能至也。然力足以至焉,于人为可讥,而在己为有悔;尽吾志也而不能至者,可以无悔矣,其孰能讥之乎?此余之所得也。
7 《石钟山记》 苏轼
《水经》云:“彭蠡之口有石钟山焉。”郦元以为下临深潭,微风鼓浪,水石相博,声如洪钟。是说也,人常疑之。今以钟磬置水中,虽大风浪不能鸣也,而况石乎!至唐李渤始访其遗踪,得双石于潭上,扣而聆之,南声函胡,北音清越,桴止响腾,余韵徐歇。自以为得之矣。然是说也,余尤疑之。石之铿然有声者,所在皆是也,而此独以钟名,何哉?