本文目录一览:
高中三角函数知识点归纳总结
除了知识和学问之外,世上没有任何力量能在人的精神和心灵中,在人的思想、想象、见解和信仰中建立起统治和权威。下面我给大家分享一些高中三角函数知识点归纳 总结 ,希望能够帮助大家,欢迎阅读!
目录
高中三角函数知识点归纳
学好高中数学的方法
高中数学常用解题方法
高中三角函数知识点归纳
一、见“给角求值”问题,运用“新兴”诱导公式
一步到位转换到区间(-90o,90o)的公式.
1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);
3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1.sinα+cosα0(或0)óα的终边在直线y+x=0的上方(或下方);
2. sinα-cosα0(或0)óα的终边在直线y-x=0的上方(或下方);
3.|sinα||cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4.|sinα||cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α+cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1.sin(α+β)sin(α-β)= sin2α-sin2β;2. cos(α+β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平 方法 则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1.若sinα+cosα=t,(且t2≤2),则2sinαcosα=t2-1=sin2α;
2.若sinα-cosα=t,(且t2≤2),则2sinαcosα=1-t2=sin2α.
八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:
tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;
3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数
y=Acot(wx+φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1.|sinx|≤1,|cosx|≤1;
2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);
3.asinx+bcosx=c有解的充要条件是a2+b2≥c2.
十一、见“高次”,用降幂,见“复角”,用转化.
1.cos2x=1-2sin2x=2cos2x-1.
2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等。
学好高中数学的方法
1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
2.错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
3.高中数学试卷怎么做?我的习惯是模拟题做专题练习,即我复习三角函数,我就一天做五套卷子的函数,练选择题,我就刷选择题。高考卷子则是完全模拟,而且优先挑自己省的以及和自己省相似的卷子模拟,时间的跨度以三年内的为准,因为我当年是课改的第二年,所以第一年的卷子我做的特别细致。
高中数学常用解题方法
一、 熟悉化方法
所谓熟悉化方法,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、 经验 或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论或问题两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论或问题以及它们的联系方式上多下功夫。
常用的途径有:
一、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
二、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
三恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论或问题之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论或条件与问题的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形点、线、面、体,构造算法,构造多项式,构造方程组,构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化方法
所谓简单化方法 ,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
高中三角函数知识点归纳总结相关 文章 :
★ 高三文科数学三角函数知识点归纳
★ 三角函数的公式归纳总结
★ 高中三角函数诱导公式知识点
★ 高中数学《任意角的三角函数》知识点
★ 高一数学三角函数图像知识点
★ 高中数学必修4三角函数公式汇总
★ 高一数学考试基础知识点
★ 2020高三数学函数知识点归纳
★ 高中数学三角函数做题技巧
★ 高一数学必修4三角函数诱导公式
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高一数学必修四知识点
高中阶段学科知识交叉多、综合性强,以理解和应用为主,要求学生要有更强的分析、概括、综合、实践的能力。在高中阶段,不能只局限于知识的学习,而要重视观察、思维、分析、阅读、动手等能力的培养。下面是我给大家带来的 高一数学 知识点,希望大家能够喜欢!
高一数学知识点汇总
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
练习题:
1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()
(A)五面体
(B)七面体
(C)九面体
(D)十一面体
2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()
(A)9
(B)18
(C)36
(D)64
3.下列说法正确的是()
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等
高一数学知识点 总结
一)两角和差公式 (写的都要记)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA_cosA
三)半角的只需记住这个:
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降幂公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降幂公式可推出以下常用的化简公式
1-cosA=sin^(A/2)_2
1-sinA=cos^(A/2)_2
高一数学知识点梳理
重点难点讲解:
1.回归分析:
就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析 方法 。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
2.线性回归方程
设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
其中。
3.线性相关性检验
线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果
如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。
典型例题讲解:
例1.从某班50名学生中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建立该10名学生的物理成绩对数学成绩的线性回归模型。
解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为,
计算,代入公式得∴所求线性回归模型为=0.74x+22.28。
说明:将自变量x的值分别代入上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。大家可以在老师的帮助下对自己班的数学、化学成绩进行分析。
例2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.56.57.0
若由资料可知y对x成线性相关关系。试求:
(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?
分析:本题为了降低难度,告诉了y与x间成线性相关关系,目的是训练公式的使用。
解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536于是b=,。∴线性回归方程为:=bx+a=1.23x+0.08。
(2)当x=10时,=1.23×10+0.08=12.38(万元)即估计使用10年时维修费用是12.38万元。
说明:本题若没有告诉我们y与x间是线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。
例3.某省七年的国民生产总值及社会商品零售总额如下表所示:已知国民生产总值与社会商品的零售总额之间存在线性关系,请建立回归模型。年份国民生产总值(亿元)
社会商品零售总额(亿元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合计4333.012194.24
解:设国民生产总值为x,社会商品零售总额为y,设线性回归模型为。
依上表计算有关数据后代入的表达式得:∴所求线性回归模型为y=0.445957x+37.4148,表明国民生产总值每增加1亿元,社会商品零售总额将平均增加4459.57万元。
例4.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜每年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份19931994199519961997199871999x(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。
分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显著水平0.05与自由度15-2相应的相关系数临界值r0.05比较,若rr0.05,则线性相关,否则不线性相关。
解:(1)列出下表,并用科学计算器进行有关计算:i123456789101112131415xi707480788592909592108115123130138145yi5.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜产量与施用氮肥量的相关系数:r=由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显著水平0.05及自由度13相关系数临界值r0.05=0.514,则rr0.05,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。
(2)设所求的回归直线方程为=bx+a,则∴回归直线方程为=0.0931x+0.7102。
当x=150时,y的估值=0.0931×150+0.7102=14.675(t)。
说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心谨慎计算,如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序也可以对这些数据进行处理。
高一数学知识点相关 文章 :
★ 高一数学必修4知识点
★ 高一数学必修4知识点总结(人教版)
★ 高一数学必修四知识点总结
★ 高一数学必修4知识点总结
★ 高中数学必修四第一章知识点总结
★ 高一数学必修4三角函数知识点总结
★ 高一数学必修4三角函数知识点总结
★ 高一数学必修四三角恒等变换知识点
★ 高一数学必修4教案
★ 高中数学必修4平面向量知识点
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
2022高中三角函数知识点
2021高中三角函数知识点有哪些你知道吗?我们在学习数学的过程中能锻炼自己观察事物的能力,分析判断力及创新能力,在以后的生活中,这些能力可以帮助我们把人生道路走得更好,使我们终生受益。一起来看看2021高中三角函数知识点,欢迎查阅!
高中三角函数知识点
角的概念的'推广.弧度制.
任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.
正弦定理.余弦定理.斜三角形解法.
考试要求
(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.
(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.
(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.
(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα?cotα=1”.
高中数学三角函数知识点 总结
一、锐角三角函数公式
sin=的对边/斜边
cos=的邻边/斜边
tan=的对边/的邻边
cot=的邻边/的对边
二、倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1
tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))
三、三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a=tanatan(/3+a)tan(/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asin+Bcos=(A2+B2)(1/2)sin(+t),其中
sint=B/(A2+B2)(1/2)
cost=A/(A2+B2)(1/2)
tant=B/A
Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B
四、降幂公式
sin2()=(1-cos(2))/2=versin(2)/2
cos2()=(1+cos(2))/2=covers(2)/2
tan2()=(1-cos(2))/(1+cos(2))
推导公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos2
1-cos2=2sin2
1+sin=(sin/2+cos/2)2
=2sina(1-sina)+(1-2sina)sina
=3sina-4sina
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cosa-1)cosa-2(1-sina)cosa
=4cosa-3cosa
sin3a=3sina-4sina
=4sina(3/4-sina)
=4sina[(3/2)-sina]
=4sina(sin60-sina)
=4sina(sin60+sina)(sin60-sina)
=4sina_2sin[(60+a)/2]cos[(60-a)/2]_2sin[(60-a)/2]cos[(60-a)/2]
=4sinasin(60+a)sin(60-a)
cos3a=4cosa-3cosa
=4cosa(cosa-3/4)
=4cosa[cosa-(3/2)]
=4cosa(cosa-cos30)
=4cosa(cosa+cos30)(cosa-cos30)
=4cosa_2cos[(a+30)/2]cos[(a-30)/2]_{-2sin[(a+30)/2]sin[(a-
30)/2]}
=-4cosasin(a+30)sin(a-30)
=-4cosasin[90-(60-a)]sin[-90+(60+a)]
=-4cosacos(60-a)[-cos(60+a)]
=4cosacos(60-a)cos(60+a)
上述两式相比可得
tan3a=tanatan(60-a)tan(60+a)
五、半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin2(a/2)=(1-cos(a))/2
cos2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
六、三角和
sin(++)=sincoscos+cossincos+coscossin
-sinsinsin
cos(++)=coscoscos-cossinsin-sincossin-sinsincos
tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
七、两角和差
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
八、和差化积
sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]
cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
九、积化和差
sinsin=[cos(-)-cos(+)]/2
coscos=[cos(+)+cos(-)]/2
sincos=[sin(+)+sin(-)]/2
cossin=[sin(+)-sin(-)]/2
十、诱导公式
sin(-)=-sin
cos(-)=cos
tan(—a)=-tan
sin(/2-)=cos
cos(/2-)=sin
sin(/2+)=cos
cos(/2+)=-sin
sin(-)=sin
cos(-)=-cos
sin(+)=-sin
cos(+)=-cos
tanA=sinA/cosA
tan(/2+)=-cot
tan(/2-)=cot
tan(-)=-tan
tan(+)=tan
诱导公式记背诀窍:奇变偶不变,符号看象限
十一、万能公式
sin=2tan(/2)/[1+tan(/2)]
cos=[1-tan(/2)]/1+tan(/2)]
tan=2tan(/2)/[1-tan(/2)]
十二、 其它 公式
(1)(sin)2+(cos)2=1
(2)1+(tan)2=(sec)2
(3)1+(cot)^2=(csc)^2
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=n(nZ)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC
(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC
(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)++sin[+2_(n-1)/n]=0
cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)++cos[+2_(n-1)/n]=0以及
sin2()+sin2(-2/3)+sin2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
学好函数的 方法
一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则
而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。
很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
二、牢记几种基本初等函数及其相关性质、图象、变换
中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。
还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题
翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。
2021高中三角函数知识点相关 文章 :
★ 高中三角函数知识点归纳
★ 2021年高三数学知识点总结
★ 高考数学知识点2021
★ 高中数学必修一三角函数知识点总结
★ 2017高考数学三角函数知识点总结
★ 怎么样学好高中数学三角函数
★ 高中数学必修四三角函数万能公式归纳
★ 高中必修4数学三角函数知识点归纳
★ 高三文科数学三角函数知识点归纳
★ 高一必修一三角函数知识点总结