黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

数学初中每章知识点(中学数学初一知识点)

本文目录一览:

初中数学所有知识点归纳有哪些?

初中数学所有知识点如下:

1、在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

2、异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

3、如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

4、利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。

5、单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

九年级数学知识点归纳

各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 九年级数学 知识点的学习资料,希望对大家有所帮助。

初三下册数学知识点 总结

半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

九年级下册数学知识点

知识点1.概念

把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)

解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.

(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.

(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.

知识点2.比例线段

对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.

知识点3.相似多边形的性质

相似多边形的性质:相似多边形的对应角相等,对应边的比相等.

解读:(1)正确理解相似多边形的定义,明确“对应”关系.

(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.

知识点4.相似三角形的概念

对应角相等,对应边之比相等的三角形叫做相似三角形.

解读:(1)相似三角形是相似多边形中的一种;

(2)应结合相似多边形的性质来理解相似三角形;

(3)相似三角形应满足形状一样,但大小可以不同;

(4)相似用“∽”表示,读作“相似于”;

(5)相似三角形的对应边之比叫做相似比.

知识点5.相似三角的判定方法

(1)定义:对应角相等,对应边成比例的两个三角形相似;

(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.

(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.

(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.

知识点6.相似三角形的性质

(1)对应角相等,对应边的比相等;

(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;

(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.

(4)射影定理

苏教版九年级上册数学知识点归纳

1二次根式:形如式子为二次根式;

性质:是一个非负数;

2二次根式的乘除:

3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.

4海伦-秦九韶公式:,S是的面积,p为.

1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.

2配方法:将方程的一边配成完全平方式,然后两边开方;

因式分解法:左边是两个因式的乘积,右边为零.

3一元二次方程在实际问题中的应用

4韦达定理:设是方程的两个根,那么有

1:一个图形绕某一点转动一个角度的图形变换

性质:对应点到中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等.

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;

九年级数学知识点归纳相关 文章 :

★ 初三数学知识点归纳总结

★ 九年级上册数学知识点归纳整理

★ 初三数学知识点考点归纳总结

★ 初三数学知识点归纳人教版

★ 九年级数学上册重要知识点总结

★ 九年级上册数学知识点归纳

★ 初中九年级数学知识点总结归纳

★ 初三数学中考复习重点章节知识点归纳

★ 初三数学知识点整理

初中数学知识点总结

初中数学知识

1.基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形.

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.

⑷对应边:全等三角形中互相重合的边叫做对应边.

⑸对应角:全等三角形中互相重合的角叫做对应角.

2.基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.

3.全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等.

⑵边角边():两边和它们的夹角对应相等的两个三角形全等.

⑶角边角():两角和它们的夹边对应相等的两个三角形全等.

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.

4.角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等.

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.

5.证明的基本方法:

⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶

角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证.

⑶经过分析,找出由已知推出求证的途径,写出证明过程.

初中数学必备知识

1.基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相

重合,这个图形就叫做轴对称图形.

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一

个图形重合,那么就说这两个图形关于这条直线对称.

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这

条线段的垂直平分线.

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫

做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做

底角.

⑸等边三角形:三条边都相等的三角形叫做等边三角形.

2.基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一

对对应点所连线段的垂直平分线.

②对称的图形都全等.

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等.

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

⑶关于坐标轴对称的'点的坐标性质

初中数学重点知识

一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2-2ab+b2 =(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

初中数学基础知识点归纳总结

初中数学教学,注重培养学生正确的数学情操和几何思维能力。下面是我为大家整理的关于初中数学基础知识点归纳 总结 ,希望对您有所帮助。欢迎大家阅读参考学习!

初中数学基础知识点归纳总结

1、定理1 关于中心对称的两个图形是全等的

2、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

3、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

4、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

5、等腰梯形的两条对角线相等

6、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形

7、对角线相等的梯形是等腰梯形

8、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

9、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

10、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

11、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

12、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h

13、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d

14、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

15、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

16、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

17、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

18、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

19、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例

20、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

21、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

22、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

23、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

24、判定定理3 三边对应成比例,两三角形相似(SSS)

25、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

26、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

27、性质定理2 相似三角形周长的比等于相似比

28、性质定理3 相似三角形面积的比等于相似比的平方

29、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

30、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

31、圆是定点的距离等于定长的点的集合

32、圆的内部可以看作是圆心的距离小于半径的点的集合

33、圆的外部可以看作是圆心的距离大于半径的点的集合

34、同圆或等圆的半径相等

35、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

36、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

37、到已知角的两边距离相等的点的轨迹,是这个角的平分线

38、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

39、定理 不在同一直线上的三点确定一个圆。

40、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

41、推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

42、推论2 圆的两条平行弦所夹的弧相等

43、圆是以圆心为对称中心的中心对称图形

44、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

45、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

46、定理 一条弧所对的圆周角等于它所对的圆心角的一半

47、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

48、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

49、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

50、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

51、①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 dr

52、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

53、切线的性质定理 圆的切线垂直于经过切点的半径

54、推论1 经过圆心且垂直于切线的直线必经过切点

55、推论2 经过切点且垂直于切线的直线必经过圆心

56、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

57、圆的外切四边形的两组对边的和相等

58、弦切角定理 弦切角等于它所夹的弧对的圆周角

59、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

60、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

61、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

62、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

63、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

64、如果两个圆相切,那么切点一定在连心线上

65、①两圆外离 dR+r ②两圆外切 d=R+r③两圆相交 R-rr)

④两圆内切 d=R-r(Rr) ⑤两圆内含 dr)

66、定理 相交两圆的连心线垂直平分两圆的公共弦

67、定理 把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

68、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

69、正n边形的每个内角都等于(n-2)×180°/n

70、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

71、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

72、正三角形面积√3a/4 a表示边长

73、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

74、弧长计算公式:L=n兀R/180

75、扇形面积公式:S扇形=n兀R^2/360=LR/2

76、内公切线长= d-(R-r) 外公切线长= d-(R+r) 本回答被提问者采纳

怎样学好初中数学

1、深刻理解概念,概念是数学的基石,学习概念不仅要知其然,还要知其所以然。

2、对于每个定义、定理必须在牢记其内容的基础上知道是怎样得来的,又是运用到何处的。

3、多看一些例题,不能只看皮毛,不看内涵。

4、要把想和看结合起来,各难度层次的例题都照顾到。

5、看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处,例题有现成的解答,思路清晰,只需循着思路走,就会得出结论,所以可以看一些技巧性较强、难度较大的例题。

相关 文章 :

1. 初中数学基础知识点总结

2. 初中数学基础知识点总结之有理数

3. 初中数学知识点整理

4. 初一数学知识点归纳与学习方法

5. 初一数学基础知识有哪些?

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

初二数学知识点归纳

临近考试了,各科都会整理好知识点复习。接下来是我为大家整理的初二数学知识点归纳,希望大家喜欢!

初二数学知识点归纳一

第十一章 三角形

一、知识框架:

二、知识概念:

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13、公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角

线,把多边形分成个三角形。②边形共有条对角线。

第十二章 全等三角形

一、知识框架:

二、知识概念:

1、基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2、基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5、证明的基本 方法 :

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶

角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

第十三章 轴对称

一、知识框架:

二、知识概念:

1、基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一

个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

2、基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

⑷等腰三角形的性质:

①等腰三角形两腰相等。

②等腰三角形两底角相等(等边对等角)。

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。

④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

⑸等边三角形的性质:

①等边三角形三边都相等。

②等边三角形三个内角都相等,都等于60°

③等边三角形每条边上都存在三线合一。

④等边三角形是轴对称图形,对称轴是三线合一(3条)。

3、基本判定:

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形。

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对

等边)。

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形。

②三个角都相等的三角形是等边三角形。

③有一个角是60°的等腰三角形是等边三角形。

4、基本方法:

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

⑷作已知图形关于某直线的对称图形:

⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

   初二数学知识点归纳二

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:

(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)。

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°。

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

初二数学知识点归纳三

数据的收集、整理与描述

一.知识框架

二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查.

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.

3.总体:要考察的全体对象称为总体.

4.个体:组成总体的每一个考察对象称为个体.

5.样本:被抽取的所有个体组成一个样本.

6.样本容量:样本中个体的数目称为样本容量.

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.

8.频率:频数与数据总数的比为频率.

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.

   初二数学知识点归纳四

数的开方

1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

2.平方根的性质:

(1)正数的平方根是一对相反数;

(2)0的平方根还是0;

(3)负数没有平方根.

3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.

4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.

5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0.

6.两个重要公式:

(1) ; (a≥0)

(2) .

7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.

8.立方根的性质:

(1)正数的立方根是一个正数;

(2)0的立方根还是0;

(3)负数的立方根是一个负数.

9.立方根的特性: .

10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

11.实数:有理数和无理数统称实数.

12.实数的分类:(1) (2) .

13.数轴的性质:数轴上的点与实数一一对应.

14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: .

三角形

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1.三角形的角平分线定义:

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:

(1) ∵AD平分∠BAC

∴∠BAD=∠CAD

(2) ∵∠BAD=∠CAD

∴AD是角平分线

2.三角形的中线定义:

在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

几何表达式举例:

(1) ∵AD是三角形的中线

∴ BD = CD

(2) ∵ BD = CD

∴AD是三角形的中线

3.三角形的高线定义:

从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

(如图)

几何表达式举例:

(1) ∵AD是ΔABC的高

∴∠ADB=90°

(2) ∵∠ADB=90°

∴AD是ΔABC的高

※4.三角形的三边关系定理:

三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

几何表达式举例:

(1) ∵AB+BCAC

∴……………

(2) ∵ AB-BC

∴……………

5.等腰三角形的定义:

有两条边相等的三角形叫做等腰三角形. (如图)

几何表达式举例:

(1) ∵ΔABC是等腰三角形

∴ AB = AC

(2) ∵AB = AC

∴ΔABC是等腰三角形

6.等边三角形的定义:

有三条边相等的三角形叫做等边三角形. (如图)

几何表达式举例:

(1)∵ΔABC是等边三角形

∴AB=BC=AC

(2) ∵AB=BC=AC

∴ΔABC是等边三角形

7.三角形的内角和定理及推论:

(1)三角形的内角和180°;(如图)

(2)直角三角形的两个锐角互余;(如图)

(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)

※(4)三角形的一个外角大于任何一个和它不相邻的内角.

(1) (2) (3)(4) 几何表达式举例:

(1) ∵∠A+∠B+∠C=180°

∴…………………

(2) ∵∠C=90°

∴∠A+∠B=90°

(3) ∵∠ACD=∠A+∠B

∴…………………

(4) ∵∠ACD ∠A

∴…………………

初二数学知识点归纳五

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

(2)正比例函数图像特征:一些过原点的直线;

(3)图像性质:

①当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

(4)求正比例函数的解析式:已知一个非原点即可;

(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线;

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移)

②当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

③当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

④当b0时,直线y=kx+b与y轴正半轴有交点为(0,b);

⑤当b0时,直线y=kx+b与y轴负半轴有交点为(0,b);

(10)求一次函数的解析式:即要求k与b的值;

(11)画一次函数的图像:已知两点;

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

初二数学知识点归纳相关 文章 :

1.

2. 初二数学上册知识点总结

3. 初二数学知识点总结

4. 初二数学上知识点总结

5. 八年级数学上知识点归纳

6. 初二数学上册知识点全总结

7. 人教版初二上数学知识点归纳

8. 初中数学知识点整理:

9. 初二数学上册知识点梳理

初中七年级数学知识点归纳整理

数学已成为许多国家及地区的 教育 范畴中的一部分。它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。这次我给大家整理了初中 七年级数学 知识点归纳,供大家阅读参考。

初中七年级数学知识点归纳

第一章 相交线与平行线

一、知识框架

二、知识概念

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.定理与性质

对顶角的性质:对顶角相等。

10垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定 方法 和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。

第二章 平面直角坐标系

一.知识框架

二.知识概念

1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)

2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。

第三章 三角形

一.知识框架

二.知识概念

1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

7.多边形的内角:多边形相邻两边组成的角叫做它的内角。

8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

12.公式与性质

三角形的内角和:三角形的内角和为180°

三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(n-2)·180°

多边形的外角和:多边形的内角和为360°。

多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

(2)n边形共有 条对角线。

三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。

第四章 二元一次方程组

一.知识结构图

二、知识概念

1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题

第五章 不等式与不等式组

一.知识框架

二、知识概念

1.用符号“”“”“≤ ”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。

7.定理与性质

不等式的性质:

不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。

第六章 数据的收集、整理与描述

一.知识框架

全面调查

抽样调查

收集数据

描述数据

整理数据

分析数据

得出结论

二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

8.频率:频数与数据总数的比为频率。

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

数学考试拿高分的窍门

一、对照法

如何正确理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

二、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

三、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

四、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。 分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

怎样才能学好数学

1.打破沙锅问到底的执着和温故知新的毅力,被某个知识点或者某道题难住,就把它搁置,问题越来越多就积重难返了。

2.不会的问题当即解决最好,解决的方法有查资料或者请教他人等;对已经解决的问题和重要知识点,要定期复习,复习时要思考有无更好的方法。

3.学会一题多解,从各个方面来了解题目的含义,锻炼孩子的变式思维;要敢于创新,老师可在讲课过程中故意出错,让学生来思考,矫正,使学生处于主动思考的状态。

初中七年级数学知识点归纳整理相关 文章 :

★ 初一数学知识点梳理归纳

★ 七年级数学知识点整理大全

★ 初一数学的知识点梳理

★ 初一数学知识点归纳梳理

★ 初一数学学习方法总结

★ 初一数学的知识点归纳

★ 初一数学考试知识点总结

★ 数学七年级下册知识点总结之变量之间的关系

★ 七年级数学上册知识点总结归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

  • 评论列表:
  •  可难擅傲
     发布于 2022-11-30 02:09:03  回复该评论
  • 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 13.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特
  •  痛言痴魂
     发布于 2022-11-30 10:39:56  回复该评论
  • 三角形的内角和为180° 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n边形的内角和等于(n-2)·180° 多边形的
  •  痴者俗野
     发布于 2022-11-30 01:15:50  回复该评论
  • 活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。 数学考试拿高分的窍门 一、对照法 如何正确理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照
  •  酒奴木緿
     发布于 2022-11-30 07:27:50  回复该评论
  • 个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.