本文目录一览:
- 1、有理数的概念及分类
- 2、有理数怎么分类?
- 3、有理数有几种分类,分别是什么
有理数的概念及分类
如下:
一、按有理数的定义分类:
有理数分为:整数和分数。
(一)整数分为三大类:
1、正整数,即大于0的整数如,1,2,3······直到n。
2、零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3、负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)。
(二)分数的两种类型:正分数、负分数。
二、按有理数的性质分类:
有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。
1、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用。有理数分类的话可以分为两种,分别是正有理数和负有理数。
2、正有理数包括正整数和正分数,正有理数是指除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。
3、负有理数包括负整数和负分数合,负有理数就是小于零并能用小数表示的数。有理数集的数可分为正有理数、负有理数和零。
有理数怎么分类?
有理数的分类
1、按有理数的定义分类
有理数分为:整数和分数。整数分为正整数、零、负整数; 分数分为:正分数、负分数。
2、按有理数的性质分类
有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。
1、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用。有理数分类的话可以分为两种,分别是正有理数和负有理数。
2、正有理数包括正整数和正分数,正有理数是指除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。
3、负有理数包括负整数和负分数合,负有理数就是小于零并能用小数表示的数。有理数集的数可分为正有理数、负有理数和零。
]
有理数的乘法运算
1、同号得正,异号得负,并把绝对值相乘。
2、任何数与零相乘,都得零。
3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4、几个数相乘,有一个因数为零,积就为零。
5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
有理数有几种分类,分别是什么
有理数的分类:
(1)正有理数
(2)负有理数
(3)0
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
扩展资料:
有理数运算定律
加法运算律:
1、加法交换律:两个数相加,交换加数的位置,和不变,即 。
2、加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 。
减法运算律:
减法运算律:减去一个数,等于加上这个数的相反数。即:
参考资料:百度百科-有理数