黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

广东省七年级下册数学知识总结(七年级全册数学知识总结)

本文目录一览:

七年级下册数学知识点总结 注意七年级下册 急用啊

第一章 整式的运算

一. 整式

※1. 单项式

①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.

②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

③一个单项式中,所有字母的指数和叫做这个单项式的次数.

※2.多项式

①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

※3.整式单项式和多项式统称为整式.

二. 整式的加减

¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

三. 同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

四.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同.

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

※7.幂的乘方与积乘方法则均可逆向运用.

五. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且mn).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a0时,a-p的值一定是正的; 当a0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

六. 整式的乘法

※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值.这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式.

※2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序.

※3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积.对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到

七.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 .

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差.

八.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍.

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误.

九.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号.

第二章 平行线与相交线

一.台球桌面上的角

※1.互为余角和互为补角的有关概念与性质

如果两个角的和为90°(或直角),那么这两个角互为余角;

如果两个角的和为180°(或平角),那么这两个角互为补角;

注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系.

它们的主要性质:同角或等角的余角相等;

同角或等角的补角相等.

二.探索直线平行的条件

※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

①同位角相等,两直线平行;

②内错角相等,两直线平行;

③同旁内角互补,两直线平行.

三.平行线的特征

※平行线的特征即平行线的性质定理,共有三条:

①两直线平行,同位角相等;

②两直线平行,内错角相等;

③两直线平行,同旁内角互补.

四.用尺规作线段和角

※1.关于尺规作图

尺规作图是指只用圆规和没有刻度的直尺来作图.

※2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长.

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧.

第三章生活中的数据

※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法.

¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字.

¤3.统计工作包括:

①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果.

第四章 概率

¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%.

※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科.

※3.了解必然事件和不可能事件发生的概率.

必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0p(a)1

※4.了解几何概率这类问题的计算方法

事件发生概率=

第五章 三角形

一.认识三角形

1.关于三角形的概念及其按角的分类

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.

这里要注意两点:

①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点.

三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形.

2.关于三角形三条边的关系

根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边.

三角形三边关系的另一个性质:三角形任意两边之差小于第三边.

对于这两个性质,要全面理解,掌握其实质,应用时才不会出错.

设三角形三边的长分别为a、b、c则:

①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形.

3.关于三角形的内角和

三角形三个内角的和为180°

①直角三角形的两个锐角互余;

②一个三角形中至多有一个直角或一个钝角;

③一个三角中至少有两个内角是锐角.

4.关于三角形的中线、高和中线

①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

②任意一个三角形都有三条角平分线,三条中线和三条高;

③任意一个三角形的三条角平分线、三条中线都在三角形的内部.但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3.

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点.

二.图形的全等

¤能够完全重合的图形称为全等形.全等图形的形状和大小都相同.只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形.

四.全等三角形

¤1.关于全等三角形的概念

能够完全重合的两个三角形叫做全等三角形.互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

所谓“完全重合”,就是各条边对应相等,各个角也对应相等.因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形.

※2.全等三角形的对应边相等,对应角相等.

¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等.

五.探三角形全等的条件

※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

六.作三角形

1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的.

2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的.

3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的.

八.探索直三角形全等的条件

※1.斜边和一条直角边对应相等的两个直角三角形全等.简称为“斜边、直角边”或“HL”.这只对直角三角形成立.

※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定.

直角三角形的其他判定方法可以归纳如下:

①两条直角边对应相等的两个直角三角形全等;

②有一个锐角和一条边对应相等的两个直角三角形全等.

③三条边对应相等的两个直角三角形全等.

第七章 生活中的轴对称

※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.

※2.角平分线上的点到角两边距离相等.

※3.线段垂直平分线上的任意一点到线段两个端点的距离相等.

※4.角、线段和等腰三角形是轴对称图形.

※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.

※6.轴对称图形上对应点所连的线段被对称轴垂直平分.

※7.轴对称图形上对应线段相等、对应角相等./p(a)1

七年级下册数学的知识点

此书名为“知识不是力量”,目的不是要宣扬知识无用论,而是希望借此名重新思考学习的本质。下面我给大家分享一些七年级下册数学的知识,希望能够帮助大家,欢迎阅读!

七年级下册数学的知识1

相交线与平行线

一、相交线 两条直线相交,形成4个角。

1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:∠1、∠2。

②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:∠1、∠3。

③对顶角相等。

二、垂线

1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

3.垂足:两条垂线的交点叫垂足。

4.垂线特点:过一点有且只有一条直线与已知直线垂直。

5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

三、同位角、内错角、同旁内角

两条直线被第三条直线所截形成8个角。

1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。

3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

四、平行线及其判定

平行线

1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。)

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.平行公理推论:平行于同一直线的两条直线互相平行。如果b//a,c//a,那么b//c

平行线的判定:

1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)

2. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)

3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)

推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

平行线的性质

(一)平行线的性质

1.两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

2.两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

3.两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角相等)

(二)命题、定理、证明

1.命题的概念:判断一件事情的语句,叫做命题。

2.命题的组成:每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果??,那么??”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

3.真命题:正确的命题,题设成立,结论一定成立。

4.假命题:错误的命题,题设成立,不能保证结论一定成立。

5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据)

6.证明:推理的过程叫做证明。

平移

1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换 (简称平移),平移不改变物体的形状和大小。

2.平移的性质

①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

七年级下册数学的知识2

实数

一、平方根

1、平方根

(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.

(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3

(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.

(7)平方根和算术平方根两者既有区别又有联系:

区别在于正数的平方根有两个,而它的算术平方根只有一个;

联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

三、实数

一、实数的概念及分类

无理数:像前面的很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。

实数:有理数和无理数统称实数。

1、实数的分类

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

数a的相反数是—a,这里a表示任意一个实数。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,零的绝对值是0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4. 实数与数轴上点的关系:

每一个无理数都可以用数轴上的一个点表示出来,

数轴上的点有些表示有理数,有些表示无理数,

实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。

三、科学记数法和近似数

1、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法

把一个数写做±a×10n的形式,其中1≤a10,n是整数,这种记数法叫做科学记数法。

四、实数大小的比较

1、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用 方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,

七年级下册数学的知识3

平面直角坐标系

一、平面直角坐标系

有序数对

1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)

2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。

平面直角坐标系

1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。

2.X轴:水平的数轴叫X轴或横轴。向右方向为正方向。

3.Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。

4.原点:两个数轴的交点叫做平面直角坐标系的原点。

对应关系:平面直角坐标系内的点与有序实数对一一对应。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

象限

1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般,在x轴和y轴取相同的单位长度。

2.象限的特点:

1、特殊位置的点的坐标的特点:

(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2)第一、三象限角平分线上的点横、纵坐标相等;

第二、四象限角平分线上的点横、纵坐标互为相反数。

(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

2、点到轴及原点的距离:

点到x轴的距离为|y|;

点到y轴的距离为|x|;

点到原点的距离为x的平方加y的平方再开根号;

3、三大规律

(1)平移规律:

点的平移规律

左右平移→纵坐标不变,横坐标左减右加;

上下平移→横坐标不变,纵坐标上加下减。

图形的平移规律 找特殊点

(2)对称规律

关于x轴对称→横坐标不变,纵坐标互为相反数;

关于y轴对称→横坐标互为相反数,纵坐标不变;

关于原点对称→横纵坐标都互为相反数。

(3)位置规律

二、坐标方法的简单应用

用坐标表示地理位置的过程:

1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。

2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。

3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

用坐标表示平移

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。

用坐标表示地理位置的过程:

1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。

2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。

3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

用坐标表示平移

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。

七年级下册数学的知识点相关 文章 :

★ 初一数学下册知识点

★ 七年级数学下册知识点总结

★ 七年级数学下册知识点归纳

★ 人教版初一数学下册知识点复习总结备战中考

★ 初一下期数学知识点总结

★ 2017年七年级下册数学知识点

★ 初一下册数学重要知识点

★ 人教版七年级下册数学复习提纲

★ 初一数学下册基本知识点总结

七年级数学下册知识点整理

每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些 七年级数学 知识点的学习资料,希望对大家有所帮助。

七年级数学知识点归纳

变量之间的关系

一理论理解

1、若Y随X的变化而变化,则X是自变量Y是因变量。

自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。

3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.

2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间

二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点

八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:

1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));

2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).

注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.

九、估计(或者估算)对事物的估计(或者估算)有三种:

1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;

2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;

3.利用关系式:首先求出关系式,然后直接代入求值即可.

初一数学下册知识点 总结

一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右两边相等。

13、解一元一次方程:

1.解一元一次方程的一般步骤

去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

使方程逐渐转化为ax=b的最简形式体现化归思想。

将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14、一元一次方程的应用

1.一元一次方程解应用题的类型

(1)探索规律型问题;

(2)数字问题;

(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);

(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

(5)行程问题(路程=速度×时间);

(6)等值变换问题;

(7)和,差,倍,分问题;

(8)分配问题;

(9)比赛积分问题;

(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路:

首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤

(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.

(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.

(3)列:根据等量关系列出方程.

(4)解:解方程,求得未知数的值.

(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

初一数学方法技巧

我们怎样预习呢?

曰:“先 说说 学习的目标:

(1)知道知识产生的背景,弄清知识形成的过程。

(2)或早或晚的知道知识的地位和作用:

(3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。

再说具体的做法:(1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。

(2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。

(3)对于例题及习题的处理见上面的(2)及下面的第五条。

七年级数学下册知识点相关 文章 :

★ 初一数学下册知识点归纳总结

★ 初一数学下册知识点

★ 初一数学下册基本知识点总结

★ 七年级下册数学复习提纲

★ 初一下期数学知识点总结

★ 初中数学七年级下册知识点提纲

★ 2021七年级下册数学复习提纲

★ 七年级下数学知识点总结

★ 七年级数学下册知识点及练习题

★ 人教版初一数学下册知识点

七年级数学下册知识点总结

数学要考的知识点有哪些呢?接下来是我为大家带来的关于 七年级数学 下册知识点 总结 ,希望会给大家带来帮助。

七年级数学下册知识点总结(一)

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数最高的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n = am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。

3、此法则也可以逆用,即:amn =(am)n=(an)m。

七、积的乘方

1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

八、三种“幂的运算法则”异同点

1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:

(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n = am÷an(a≠0)。

十、零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

十一、负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

(a+b)•(a-b)的形式,然后看a2与b2是否容易计算。

十四、完全平方公式

七年级数学下册知识点总结(二)

第二章 平行线与相交线

一、平行线与相交线

平行线:在同一平面内,不相交的两条直线叫做平行线。

若两条直线只有一个公共点,我们称这两条直线为相交线。

二、余角与补角

1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。

3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。

5、余角和补角的性质用数学语言可表示为:

6、余角和补角的性质是证明两角相等的一个重要 方法 。

三、对顶角

1、两条直线相交成四个角,其中不相邻的两个角是对顶角。

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

3、对顶角的性质:对顶角相等。

4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。

5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

四、垂线及其性质

1、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

2、垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

五、同位角、内错角、同旁内角

1、两条直线被第三条直线所截,形成了8个角。

2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。

3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。

4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。

5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。

六、六类角

1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。

2、余角、补角只有数量上的关系,与其位置无关。

3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。

4、对顶角既有数量关系,又有位置关系。

七、平行线的判定方法

1、同位角相等,两直线平行。

2、内错角相等,两直线平行。

3、同旁内角互补,两直线平行。

4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。

5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。

八、平行线的性质

1、两直线平行,同位角相等。

2、两直线平行,内错角相等。

3、两直线平行,同旁内角互补。

4、平行线的判定与性质具备互逆的特征,其关系如下:

在应用时要正确区分积极向上的题设和结论。

九、尺规作线段和角

1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。

2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。

3、尺规作图中直尺的功能是:

(1)在两点间连接一条线段;

(2)将线段向两方延长。

(2)将线段向两方延长。

4、尺规作图中圆规的功能是:

(1)以任意一点为圆心,任意长为半径作一个圆;

(2)以任意一点为圆心,任意长为半径画一段弧;

5、熟练掌握以下作图语言:

(1)作射线××;

(2)在射线上截取××=××;

(3)在射线××上依次截取××=××=××;

(4)以点×为圆心,××为半径画弧,交××于点×;

(5)分别以点×、点×为圆心,以××、××为半径作弧,两弧相交于点×;

(6)过点×和点×画直线××(或画射线××);

(7)在∠×××的外部(或内部)画∠×××=∠×××;

6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。

(1)画线段××=××;

(2)画∠×××=∠×××;

七年级数学下册知识点总结(三)

第三章 变量之间的关系

一、变量、自变量、因变量

1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:

(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

二、表格

1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;

(2)分清哪一个量为自变量,哪一个量为因变量;

(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系

(1)列表时首先要确定各行、各列的栏目;

(2)一般有两行,第一行表示自变量,第二行表示因变量;

(3)写出栏目名称,有时还根据问题内容写上单位;

(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

三、关系式

1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:

(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。

(2)根据表格中所列的数据写出变量之间的关系式;

(3)根据实际问题中的基本数量关系写出变量之间的关系式;

(4)根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:

(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;

(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;

(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

四、图象

1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。

2、图象能清楚地反映出因变量随自变量变化而变化的情况。

3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量。

4、图象上的点:

(1)对于某个具体图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值;

(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值。

(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值。

(4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值。

5、图象理解

(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;

(2)看该点所对应的横轴、纵轴的位置(数据);

(3)从图象上还可以得到随着自变量的变化,因变量的变化趋势。

五、速度图象

1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间;

2、准确读懂不同走向的线所表示的意义:

(1)上升的线:从左向右呈上升状的线,其代表速度增加;

(2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止;

(3)下降的线:从左向右呈下降状的线,其代表速度减小。

六、路程图象

1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间;

2、准确读懂不同走向的线所表示的意义:

(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);

(2)水平的线:与水平轴(横轴)平行的线,其代表静止;

(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。

七年级数学下册知识点总结(四)

第四章 三角形

一、三角形概念

1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。

2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。

3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;

4、∠A、∠B、∠C为ΔABC的三个内角。

二、三角形中三边的关系

七年级数学下册知识点提纲

数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定成绩高低,以下是我给大家整理的 七年级数学 下册知识点提纲,希望对大家有所帮助,欢迎阅读!

七年级数学下册知识点提纲

1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.对顶角和邻补角的关系

4.垂直:两条直线、两个平 面相 交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

7.垂线性质

(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

8.同位角、内错角、同旁内角:

同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

10.平行线:在同一平面内,不相交的两条直线叫做平行线。

11.命题:判断一件事情的语句叫命题。

12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

13.假命题:条件和结果相矛盾的命题是假命题。

14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

16.定理与性质

对顶角的性质:对顶角相等。

17.垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

19.平行线的性质:

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

20.平行线的判定:

判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

21.命题的扩展

三种命题

(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。

(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。

(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

四种命题的相互关系

(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。

(2)四种命题的真假关系:

两个命题互为逆否命题,它们有相同的真假性。两个命题为互逆命题或互否命题,它们的真假性没有关系

命题之间的关系

(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。

(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。

(3)命题的分类:

A:原命题:一个命题的本身称之为原命题,如:若x1,则f(x)=(x-1)2单调递增。

B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x1.

C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,

如:若x小于1,则f(x)=(x-1)2不单调递增。

D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,

如:若f(x)=(x-1)2不单调递增,则x小于1.

(4)命题的否定

命题的否定是只将命题的结论否定的新命题,这与否命题不同。

(5)4种命题及命题的否定的真假性关系

原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。

充分条件与必要条件

(1)“若p,则q”为真命题,叫做由p推出q,记作p=q,并且说p是q的充分条件,q是p的必要条件。

(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。

充要条件

如果既有p=q,又有q=p,就记作p=q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件

数学考前怎样复习

首先,要抓住基础概念,将其作为技巧突破口。数学试题中的所谓解题技巧其实并不是什么高深莫测的东西,它来源于最基础的知识和概念,是掌握到一定程度时的灵光一现。要寻找差异——因为做了大量雷同的练习,所以容易造成对相近试题的判断失误,这是非常危险的。

其次,要抓住常用公式,理解其来龙去脉。这对记忆常用数学公式是很有帮助的。此外,还要进一步了解其推导过程,并对推导过程中产生的一些可能变化进行探究,这样做胜过做大量习题,并可以使自己更好地掌握公式的运用,往往会有意想不到的效果。

再次,要抓住中考动向,勤练解题规范。很多学生认为,只要解出题目的答案就能拿到满分了。其实,由于新课程改革的不断深入,中考越来越注重解题过程的规范和解答过程的完整,只要是有过程的解答题,过程比最后的答案要重要得多。所以,要规范书写过程,避免“会而不对”、“对而不全”的情形。

最后,要抓住数学思想, 总结 解题 方法 。中考中常出现的数学思想方法有分类讨论法、面积法、特值法、数形结合法等,运用变换思想、方程思想、函数思想、化归思想等来解决一些综合问题,在脑海中将每一种方法记忆一道对应的典型试题,并有目的地将较综合的题目分解为较简单的几个小题目,做到举一反三,化繁为简,分步突破;而在与同学的合作学习中,要将较为简单的题组合成较有价值的综合题。

数学 学习方法

1、基础很重要

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。数学公式,几何图形的性质,函数的性质等,都是数学学习的基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

因为一些最基础的知识没有掌握透彻,导致做题的时候没有思路。基础不牢、地动山摇,一个小小的知识漏洞可能导致你在整一个题中都没有思路,非常危险。

2、错题本很重要

在所有科目中,数学这个科目最重要错题本学习法。特别提倡大家整理错题,对于错题本有一些小窍门,那就是平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3、做题要多 反思

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4、把数学知识形成体系

课本上的知识都是零散的,建议大家自己画 思维导图 把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。

七年级数学下册知识点提纲相关 文章 :

★ 初中数学七年级下册知识点提纲

★ 初一数学下册知识点归纳总结

★ 七年级下册数学复习提纲

★ 七年级下数学知识点总结

★ 初一下期数学知识点总结

★ 浙教版七年级下册数学知识点提纲

★ 2021七年级下册数学复习提纲

★ 初一数学下册基本知识点总结

★ 七年级北师大版数学下册提纲

★ 七年级数学下册知识点总结

  • 评论列表:
  •  绿邪莘夏
     发布于 2022-12-18 23:40:00  回复该评论
  • 种: 1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大)); 2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小). 注意:如
  •  只酷谨兮
     发布于 2022-12-18 16:51:56  回复该评论
  • 3)命题的分类: A:原命题:一个命题的本身称之为原命题,如:若x1,则f(x)=(x-1)2单调递增。 B:逆命题:将原命题的条件和结论颠倒的新命题,如:若f(x)=(x-1)2单调递增,则x1. C:否命题:将原命题的条件和结论全否定的新命题,
  •  痴妓囍神
     发布于 2022-12-18 15:35:42  回复该评论
  • 的意义,一要看横轴、纵轴分别表示哪个变量; (2)看该点所对应的横轴、纵轴的位置(数据); (3)从图象上还可以得到随着自变量的变化,因变量的变化趋势。 五、速度图象 1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间; 2、准确读懂不同走向的

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.