本文目录一览:
- 1、勾股定理的应用重点知识点
- 2、勾股定理知识点
- 3、初中勾股定理知识点
- 4、初二勾股定理知识点
- 5、勾股定理知识点总结?
勾股定理的应用重点知识点
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,以下是由学习啦小编整理关于勾股定理知识归纳的内容,希望大家喜欢!
一、勾股定理
1、勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的证明:
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是:
(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;
(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4、勾股定理的适用范围:
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理
1、逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;
(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b、
2、利用勾股定理的逆定理判断一个三角形是否为直角三角形 ......
勾股定理知识点
1.勾股定理的内容:在直角三角形中,两条直角边的平方和等于斜边的平方。
2勾股定理的逆定理:在三角形中,如果两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.常见的勾股数:3 4 5.
6 8 10 . 5 12 13 .7 24 25等等
4.直角三角形的应用
初中勾股定理知识点
在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²
勾股定理是余弦定理中的一个特例。
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
初二勾股定理知识点
就是直角三角形的三边关系,这样的题目不难的,多做一点就好了呀,加油吧,希望你能考个好成绩。
勾股定理知识点总结?
勾股定理:在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。
(如下图所示,即a² + b² = c²)
例子:
以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。
由勾股定理得,a + b = c → 3 +4 = c
即,9 + 16 = 25 = c²
c = √25 = 5
所以我们可以利用勾股定理计算出c的边长为5。
勾股定理的逆定理:
勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:
如果a² + b² = c² ,则△ABC是直角三角形。
如果a² + b² c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。
如果a² + b² c² ,则△ABC是钝角三角形。