本文目录一览:
函数连续那块的 间断点和类型
1、找出无定义的点,就是间断点。 2、用左右极限判断是第一类间断点还是第二类间断点,第一类间断点包括第一类可去间断点和第一类不可去间断点,如果该点左右极限都存在,则是第一类间断点,其中如果左右极限相等,则是第一类可去间断点。 3、如果左右极限不相等,则是第一类不可去间断点,即第一类跳跃间断点。如果左右极限中有一个不存在,则第二类间断点。如果函数f在点x连续,则称x是函数f的连续点;如果函数f在点x不连续,则称x是函数f的间断点。 1、间断点是指在非连续函数y=f(x)中某点处xo处有中断现象,那么,xo就称为函数的不连续点。间断点可以分为无穷间断点和非无穷间断点,在非无穷间断点中,还分可去间断点和跳跃间断点。如果极限存在就是可去间断点,不存在就是跳跃间断点。 2、类型 可去间断点:函数在该点左极限、右极限存在且相等。跳跃间断点:函数在该点左极限、右极限存在,但不相等。无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。
函数的连续与间断
函数间断点就是函数不连续的点,有三种情况:函数没定义的点;2.虽在某一点有定义但极限不存在的点;3.在某一点有定义,极限存在,但极限不等于函数值的点.间断点类型:可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义.跳跃间断点:函数在该点左极限、右极限存在,但不相等.无穷间断点:函数在该点可以有定义,且左极限、右极限至少有一个为∞.振荡间断点:函数在该点可以有无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次.对于此题,函数在x=-1和x=0.5处没定义,因为分母不能等于0.x趋于-1时,左右极限相等(洛必达法则);x趋于0.5时极限趋于无穷,故x=-1为可去间断点,x=0.5为无穷间断点.
高等数学关于函数的连续性与间断点的问题
理解正确。f(x)在x=a点处连续。
假设|f(x)|在a处不连续,则设左极限lim(x→a-)|f(x)|=A,右极限lim(x→a+)|f(x)|=B;
∴A≠B;A≥0且B≥0;
则函数f(x)在a处左极限lim(x→a-)f(x)=±A;右极限lim(x→a+)f(x)=±B;
则±A≠±B;
于是函数f(x)在a处lim(x→a-)f(x)≠lim(x→a+)f(x);
左右极限不相等;
则函数f(x)在a处极限不存在;
那么函数f(x)在a不连续;
这与已知条件相悖;
∴假设不成立;
∴|f(x)|也在a连续
高等数学,关于函数的连续性和间断性
一类间断点,就是函数无定义的孤点,但是紧靠该点两侧,函数值(极限)相同;
其他间断点,是函数无定义的孤点,紧靠该点两侧,函数值(极限)不同。
(1)分式,分母为0的点,就是间断点。
y=(x-1)(x+1)/(x-1)(x-2),x=1,x=2是间断点,但是,如果x≠1,x-1可以约去,y=(x+1)/(x-2),只要补充定义,x=1时,y=(x+1)/(x-2),函数在x=1就是连续的,x=2不可去。
(2)x=kπ时,tanx=0,分母为0,是间断点,在该点两侧,tanx的值异号,接近于0,倒数之后,分别是±无穷大,不连续,且不可去。
(3)x趋近于0,1/x趋近于±无穷大,cosx的值不确定,因此,不可去。
(4)x从左侧趋近于1,y趋近于0,x从右侧趋近于1,y趋近于2,不同,不可去。
看左右极限是否相同,是判断是否可去的基本方法。