本文目录一览:
二次函数的知识点有哪些
我们把形如y=ax^2+bx+c(七种a,b,c是常数,a≠0)的函数叫做二次函数(quadratic
function),称a为二次项系数,b为一次项系数,c为常数项.一般的,形如y=ax^2+bx+c(a≠0)的函数叫二次函数.自变量(通常为x)和因变量(通常为y).右边是整式,且自变量的最高次数是2.
注意,“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”.未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值.在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同.从函数的定义也可看出二者的差别.
二次函数的解法
二次函数的通式是
y=
ax^2+bx+c如果知道三个点
将三个点的坐标带入也就是说三个方程解三个未知数
如题方程一8=a2+b2+c
化简
8=c
也就是说c就是函数与Y轴的交点
方程二7=a×62+b×6+c
化简
7=36a+6b+c
方程三7=a×(-6)2+b×(-6)+c化简
7=36a-6b+c
解出a,b,c
就可以了
上边这种是老老实实的解法
对(6,7)(-6,7)这两个坐标
可以求出一个对称轴也就是X=0
通过对称轴公式x=-b/2a
也可以算
如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算
或者使用韦达定理一元二次方程ax+bx+c=0
(a≠0
且△=b^2-4ac≥0)中
设两个根为X1和X2
则X1+X2=
-b/a
X1·X2=c/a
一般式
y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b^2;/4a)
顶点式
y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式
交点式
y=a(x-x1)(x-x2)
(a≠0)
[仅限于与x轴即y=0有交点A(x1,0)和
B(x2,0)的抛物线,即b^2-4ac≥0]
由一般式变为交点式的步骤:
∵X1+x2=-b/a
x1·x2=c/a
∴y=ax^2+bx+c
=a(x^2+b/ax+c/a)
=a[﹙x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向.a0时,开口方向向上;a0时,
函数图像与x轴有两个交点.
当△=b^2-4ac=0时,函数图像与x轴有一个交点.
当△=b^2-4ac
二次函数的知识点归纳总结是什么?
二次函数的知识点:
1、二次函数的定义:y=ax^2+bx+c(a≠0)。
2、图像和性质:
二次函数y=ax^2(a0)的图像和性质。
二次函数y=ax^2(a0)的图像和性质。
二次函数y=ax^2+bx+c(a0)的图像和性质。
二次函数y=ax^2+bx+c(a0)的图像和性质。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a0,与b同号时(即ab0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a。
当a0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号。
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a0,b0或a。
二次函数知识点归纳
二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x²的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
Δ= b^2-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
答案补充
画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
答案补充
如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k
定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
二次函数的三种表达式
①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k
③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交点式的关系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
二次函数的知识点
二次函数的表达式是f(x)=ax^2+bx+c(a不为0)。在这个多项式中,x是自变量,y是因变量,常数项是c,一次项系数是b,二次项系数是a。它的图像是一条主轴与y轴平行的抛物线。
二次函数贯穿中学数学,我们从初中与二次函数初次接触,它将几何和代数有机结合,是中考重点内容,也是高中代数的奠基石。
二次函数主要有哪些知识点?
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x2的图像,
可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P[-b/2a,(4ac-b^2;)/4a]。
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2;+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2;+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。
二次函数解析式的几种形式
(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k
定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数
二次函数的三种表达式
①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
②顶点式[抛物线的顶点P(h,k)]:y=a(x-h)^2+k
③交点式[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]:y=a(x-x1)(x-x2)
以上3种形式可进行如下转化:
①一般式和顶点式的关系
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
②一般式和交点式的关系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
二次函数的知识点,要详细的!
专题一:二次函数的图象与性质
本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.
考点1.二次函数图象的对称轴和顶点坐标
二次函数的图象是一条抛物线,它的对称轴是直线x=- ,顶点坐标是(- , ).
例1 已知,在同一直角坐标系中,反比例函数 与二次函数 的图像交于点 .
(1)求 、 的值;
(2)求二次函数图像的对称轴和顶点坐标.
考点2.抛物线与a、b、c的关系
抛物线y=ax2+bx+c中,当a0时,开口向上,在对称轴x=- 的左侧y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当a0时,开口向下,在对称轴的右侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.
例2 已知 的图象如图1所示,则 的图象一定过( )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限 D.第一、三、四象限
考点3.二次函数的平移
当k0(k0)时,抛物线y=ax2+k(a≠0)的图象可由抛物线y=ax2向上(或向下)平移|k|个单位得到;当h0(h0)时,抛物线y=a(x-h)2(a≠0)的图象可由抛物线y=ax2向右(或向左)平移|h|个单位得到.
例3 把抛物线y=3x2向上平移2个单位,得到的抛物线是( )
A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x2+2 D.y=3x2-2
专题练习一
1.对于抛物线y= x2+ x ,下列说法正确的是( )
A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3)
C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3)
2.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )
A.抛物线开口向上
B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为-4
D.抛物线与x轴交点为(-1,0),(3,0)
3.将二次函数y=x2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.
4.小明从图2所示的二次函数 的图象中,观察得出了下面五条信息:① ;② ;③ ;④ ;⑤ ,你认为其中正确信息的个数有_______.(填序号)
专题复习二:二次函数表达式的确定
本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.
考点1.根据实际问题模型确定二次函数表达式
例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园 ,设 边长为 米,则菜园的面积 (单位:米 )与 (单位:米)的函数关系式为 (不要求写出自变量 的取值范围).
考点2.根据抛物线上点的坐标确定二次函数表达式
1.若已知抛物线上三点的坐标,则可用一般式:y=ax2+bx+c(a≠0);
2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a(x-h)2+k(a≠0);
3.若已知抛物线与x轴的两个交点坐标及另一个点,则可用交点式:y=a(x-x1)(x-x2)(a≠0).
例2 已知抛物线的图象以A(-1,4)为顶点,且过点B(2,-5),求该抛物线的表达式.
例3 已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8).
(1)求该抛物线的解析式;
(2)求该抛物线的顶点坐标.
专项练习二
1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数表达式为( )
A.y=2a(x-1) B.y=2a(1-x) C.y=a(1-x2) D.y=a(1-x)2
2.如图2,在平而直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO= ,CO=BO,AB=3,则这条抛物线的函数解析式是 .
3.对称轴平行于y轴的抛物线与y轴交于点(0,-2),且x=1时,y=3;x=-1时y=1,
求此抛物线的关系式.
4.推理运算:二次函数的图象经过点 , , .
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移 个单位,使得该图象的顶点在原点.
专题三:二次函数与一元二次方程的关系
本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x轴的交点个数等,题型主要填空题、选择题和解答题.
考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围
一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数y的值为0时的情况.
例1 根据下列表格中二次函数y=ax2+bx+c的自变量 与函数值 的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c,为常数)的一个解 的范围是()
6.17 6.18 6.19 6.20
A. B.
C. D.
考点2.根据二次函数的图象确定所对应的一元二次方程的根.
二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.
例2 已知二次函数y=-x2+3x+m的部分图象如图1所示,则关于x的一元二次方程-x2+3x+m=0的解为________.
考点3.抛物线的交点个数与一元二次方程的根的情况
当二次函数y=ax2+bx+c的图象与x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根;当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根;当二次函数y=ax2+bx+c的图象与x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根.反之亦然.
例3 在平面直角坐标系中,抛物线 与 轴的交点的个数是( )
A.3 B.2 C.1 D.0
专项练习三
1.抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是________.
2.已知二次函数 的部分图象如图2所示,则关于 的一元二次方程 的解为 .
3.已知函数 的图象如图3所示,那么关于 的方程 的根的情况是( )
A.无实数根 B.有两个相等实数根
C.有两个异号实数根 D.有两个同号不等实数根
4. 二次函数 的图象如图4所示,根据图象解答下列问题:
(1)写出方程 的两个根.
(2)写出不等式 的解集.
(3)写出 随 的增大而减小的自变量 的取值范围.
(4)若方程 有两个不相等的实数根,求 的取值范围.
专题四:利用二次函数解决实际问题
本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.
解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.
例 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
专题训练四
1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?
2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?
3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;
(2)求支柱 的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.
数学二次函数的重点.要点
次 函 数 要 点 姓名:一.以下说明什么?1.抛物线过原点 2.抛物线对称轴为y轴 3.抛物线顶点在x轴上 4.抛物线顶点在原点5.抛物线顶点在y轴上 6。抛物线与x轴交点的横坐标为x1,x2,则对称轴为 ,抛物线过(4,6),(2,6)两点,则说明抛物线对称轴为 。7.当x为何值时函数y有最大值或最小值8.说出y=ax2,y=ax2+c,y=a(x+m)2,y=a(x+m)2+k的顶点坐标,以上几种形式都可称为 式9.求二次函数的最值就是求 。10。函数y=ax2+bx+c的最小值是-1,说明什么?11.如何判断抛物线与x轴的交点的个数?如何求其坐标?12.如何判断函数与函数的交点个数?如何求其坐标?13.要使抛物线进行左、右平移必须在什么形式下进行?例 把y=x2+4x向左平移2个单位把抛物线进行上、下平移必须在什么形式下进行?14.把抛物线的旋转1800,必须在 式下,改变 的值即可。 例 把y=4x2+3和y=4x2+8x旋转1800得解析式为 。15.求抛物线的顶点坐标有几种方法,各为何法?16.求抛物线顶点的公式为 。17.函数有最大值或最小值由谁决定,何时有最大值,最小值?18.二次项系数a决定函数图象的 ,|a|越大,图象开口 。19.求抛物线与x轴两个交点间的距离如何求? 例。分别求二次函数(1)y=x2+4x-3 (2)y=x2+(a-2)x-2a20.如何求抛物线与y轴的交点坐标?21.二次函数对称轴只与哪些系数有关?例 求二次函数y=2x2-4x-c的对称轴22.在二次函数中,何时出现一元二次方程,什么情况下提及△例 抛物线y=x2-2x-3与x轴的交点个数为 。23.函数y =ax2+bx+c y恒大于0,必须具备什么条件 。y恒小于0必须具备什么条件 。y恒大于等于0或恒小于等于0呢?24.抛物线与y轴交于正半轴,则c 0,交于负半轴 则c 0。二、二次函数必须掌握的题型及步骤 (一) 二次函数与坐标轴交点的求法1.求二次函数与x轴的交点坐标步骤:令y=0,求ax2+bx+c=0的两根x1、x2,则x1、x2即为二次函数与x轴的交点的横坐标2.求二次函数与y轴的交点坐标步骤:把x=0代入y=ax2+bx+c中,求得y 即为交点的纵坐标例 抛物线y=2(x-1)2与x轴的交点坐标 ,与y轴的交点坐标 。二.函数与函数的交点坐标的求法步骤:(1)把两函数组成方程组 (2)方程组的解即为交点坐标例 求直线y=3x-3 与抛物线y=x2-x+1的交点坐标 。三.求函数解析式步骤:(1)设函数解析式 (2)求方程或方程组 (3)求得系数代入解析式 (4)化成一般式类别:顶点式y=a(x+m)2+k已知特点:(1)已知顶点坐标 (2)已知对称轴(3)最值 例(1)抛物线的顶点坐标是(-1,-2)且经过点(1,10)(2)抛物线当x=3时,y最大值=4,且经过点(4,-3)2.一般式y=ax2+bx+c已知特点:(1)三个一般点例 已知抛物线通过三点:(1,0),(0,-2),(2,3)(2)已知对称轴及两个一般点例 已知抛物线对称轴为x=2的直线且通过(1,4)和(5,0)两点四.四点作图法五点:(1)顶点 (2)与x轴交点(x1,0),(x2,0)(3)与y轴的交点(0,c)五.题目中出现y>0,y<0,y=0(或y=ax2+bx+c>0)步骤:(1)求抛物线与x轴交点的横坐标 (2)画草图(只须与x轴交点的横坐标及开口方向)例 (1)已知二次函数y =3(x-2)(x+3),问x 为何值时y>0,y<0,y=0(2)看图求解何时y>0,y<0,y=0 六.比较函数值y的大小步骤:(1)已知二次函数的对称轴 (2)画草图(草图只须对称轴及开口方向) (3)点在对称轴的同侧:用函数增减性比较异侧:用点与对称轴的距离来比较例 (1)已知二次函数y=-x2+2x+3,设自变量x1>x2>x3>1,试比较y1,y2,y3的大小(2)二次函数y=-2x2+4x+k,当x分别取0,1.5,3时,相应的函数值为y1,y2,y3,那么y1,y2,y3的大小关系为 (用<号连接)七、函数应用题1、经济类:利润=(售价-成本价)乘以销售量2、几何类:运用几何面积或周长3、实际生活类:如桥、篮球、水流等要先建立适当的平面直角坐标系,把实际数据转化成点的坐标,再求出函数解析式。1、已知抛物线 的对称轴为x=2,且经过点(3,0),则a+b+c的值为 . 2、已知抛物线 经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点坐标是___________. 1、求将二次函数 图像向右平移1个单位,再向上平移2个单位后得到图像的函数表达式.2、请写出一个二次函数解析式,使其图像的对称轴为x=1,并且开口向下.3、请写出一个二次函数解析式,使其图象与x轴的交点坐标为(2, 0)、(-1,0). 4、请写出一个二次函数解析式,使其图象与y轴的交点坐标为(0, 2),且图象的对称轴在y轴的右侧.2.二次函数 的图象上有两点(3,-8)和(-5,-8),则此抛物线的对称轴是( )3.抛物线 的图象过原点,则 为( )4.把二次函数 配方成顶点式为( )5.直角坐标平面上将二次函数y=-2(x-1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )6.函数 的图象与 轴有交点,则 的取值范围是( )一、补全网络1.二次函数的定义:一般地,形如 的函数叫做x的二次函数,a具备的条件是 .2.二次函数的图象是 ,它是具有 对称性质的图形。3. 图象的性质:(1)开口方向: (2)顶点及对称轴: (3)增减性: (4)最大值(或最小值):二、巩固网络1.当a 时,函数 是二次函数,当a 时,是一次函数.2.抛物线 的对称轴是 ,开口 ,在对称轴的左侧,y随x的增大而 ,当x 时,y随x的增大而增大,当x 时,函数有 值,是 .3.抛物线 的顶点坐标是 ,对称轴是 ,与y轴的交点是 . 4.写出一个二次函数:(1)开口向下,对称轴在y轴的右侧 ;(2)开口向上,且经过原点 .回思:(1)这四道题都涉及那些知识点? (2)运用什么方法做题时比较直观?5.二次函数 的图象向上平移2个单位,得到的函数解析式是 ,将得到的新图象再向左平移3个单位,得到的函数解析式是 .6.二次函数 的图象向下平移3个单位,再向右平移4个单位,得到的函数解析式是 ,再绕顶点旋转 得到的函数解析式是 .回思:(1)这两道题有什么共同特点? (2)你用什么方法作的?8.二次函数 的图象上有 , , 三点,则y1,y2,y3的大小关系是 . 回思:你用什么方法做这道题?你有几种方法?哪种方法最简单?9.用两种方法求 的顶点及对称轴.方法一:公式法 方法二:配方法回思:(1)这两种方法有什么内在联系? (2)用哪种方法做题速度快?三、尝试范例例 若抛物线 的顶点在x轴上,求c的值.回思:(1)解题的关键是什么? (2)易犯什么错误?