本文目录一览:
分式的思维导图
分式的思维导图如下:
一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
判断一个式子是否是分式,不要看式子是否是 的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式是否有意义,即分母是否为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
扩展资料:
分式的条件如下:
1、分式有意义条件:分母不为0。
2、分式值为0条件:分子为0且分母不为0。
3、分式值为正(负)数条件:分子分母同号得正,异号得负。
4、分式值为1的条件:分子=分母≠0。
5、分式值为-1的条件:分子分母互为相反数,且都不为0。
参考资料:
百度百科-分式
如何在数学教学中使用思维导图
一、树形思维导图
学生运用树形图对数学知识进行梳理比较熟练。学生在生活中早已认识了树的形状,对树干、树枝、树叶及分枝的感知非常清晰,也就很容易的联想到树干、树枝与主题、分主题的逻辑关系。所以学生运用树形图的时候比较多,也绘制的比较好。
如图1是苏科版数学八年级下册第10章分式的树形思维导图.
图1 分式树形思维导图
树形图的优点是主干分支非常明确,但画起来比较麻烦。为了更简单的运用思维导图,研究更简单的思维导图形式,大家确认就把树干简化为一个圆、椭圆或正方形等简单易画的图形,如图2:学生把树干简化成一个圆环,涂上不同颜色,画上一个指针,这是苏科版数学八年级下册第8章第二节数学实验室中的转盘模型变形图,学生的这一构想即贴近课本又有一定的创造性。
图2:概率树形思维导图
二、箭头或框架式思维导图
箭头或框架样式的思维导图,老师在日常备课或给学生做知识梳理的时候会经常使用,非常简洁明了,而且容易绘制。只是以前我们没有把它作为一种学习方法并上升到理论高度去重视。这种结构图实际上就是一种很简单好用的思维导图,特别适合在课堂中应用。在具体的运用中我们要先总结出本节课的主题,用一个关键词表示。然后直接用箭头往下分支出二级、三级等主题,也是常见的框架结构图,学生运用起来非常简单容易上手。有好多学生把框架结构变形为椭圆形箭头图、鱼骨头型箭头图。如图3是学生梳理二次根式的箭头式思维导图。
图3 二次根式思维导图
三、实物型思维导图
学生的思维被打开以后,他们的想象力非常丰富,画出了许多实物型思维导图,如风筝、蝴蝶、花篮、风车等等。如图4:花篮即是主干,也就是主体部分。学生冠上各个关键词后,就能对学过的知识进行清晰的梳理和记忆。学生也非常喜欢进行这样的勾画。
图4 特殊平行四边形的思维导图
三、表格式思维导图
我们在数学教学中经常会运用表格来进行知识的梳理和比较,能让学生一目了然的了解知识的区别与联系。这实际上也可以看作是一种思维导图,利用表格来绘制思维导图,学生比较容易接受和理解,所以,表格式思维导图也是学生比较喜欢的的一种形式。如图5是学生在学习完苏科版数学八年级下册第11章反比例函数后绘制的表格式思维导图,总结比较了一次函数与反比例函数的知识。
八年级历史上册各课的思维导图该怎么画?
如图:
思维导图又叫心智导图,是表达发散性思维的有效图形思维工具 ,它简单却又很有效,是一种革命性的思维工具。思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来,把主题关键词与图像、颜色等建立记忆链接。思维导图充分运用左右脑的机能,利用记忆、阅读、思维的规律,协助人们在科学与艺术、逻辑与想象之间平衡发展,从而开启人类大脑的无限潜能。思维导图因此具有人类思维的强大功能。
思维导图是一种将思维形象化的方法。我们知道放射性思考是人类大脑的自然思考方式,每一种进入大脑的资料,不论是感觉、记忆或是想法——包括文字、数字、符码、香气、食物、线条、颜色、意象、节奏、音符等,都可以成为一个思考中心,并由此中心向外发散出成千上万的关节点,每一个关节点代表与中心主题的一个连结,而每一个连结又可以成为另一个中心主题,再向外发散出成千上万的关节点,呈现出放射性立体结构,而这些关节的连结可以视为您的记忆,就如同大脑中的神经元一样互相连接,也就是您的个人数据库。