本文目录一览:
直线方程 含义
直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
高中数学知识点总结:直线方程
1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线
K=-A/B,b=-C/B
A1/A2=B1/B2≠C1/C2←→两直线平行
A1/A2=B1/B2=C1/C2←→两直线重合
横截距a=-C/A
纵截距b=-C/B
2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线
表示斜率为k,且过(x0,y0)的直线
3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线
点击查看:高中数学知识点
4:斜截式:y=kx+b适用于不垂直于x轴的直线
表示斜率为k且y轴截距为b的直线
5:两点式:适用于不垂直于x轴、y轴的直线
表示过(x1,y1)和(x2,y2)的直线
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)
6:交点式:f1(x,y)*m+f2(x,y)=0适用于任何直线
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线
7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线
表示过点(x0,y0)且与直线f(x,y)=0平行的直线
8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度
直线方程所有知识点
1)一般式:适用于所有直线
Ax+By+C=0
(其中A、B不同时为0)
两直线平行时:A1/A2=B1/B2≠C1/C2
两直线垂直时:A1A2+B1B2=0
(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为
x=x0
(3)截矩式:不适用于和任意坐标轴垂直的直线
知道直线与x轴交于(a,0),与y轴交于(b,0),则直线可表示为
bx+ay-ab=0
斜截式方程为
Y=KX+B
两直线平行时
K1=K2
两直线垂直时
K1
X
K2
=
-1
(4)两点式
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
x1不等于x2
y1不等于y2
(5)点到直线方程
|Ax+By+C|/sqr(A^2+B^2)
sqr是根号
^2是平方
人教版高一数学必修一第三章直线与方程的主要知识点
第三章:直线与方程的知识点倾斜角与斜率1. 当直线l与x轴相交时,我们把x轴正方向与直线l向上方向之间所成的角叫做直线l的倾斜角.当直线l与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l的倾斜角 的范围是 .2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即 . 如果知道直线上两点 ,则有斜率公式 . 特别地是,当 , 时,直线与x轴垂直,斜率k不存在;当 , 时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y轴平行或者重合. 当α=90°时,斜率k=0;当 时,斜率 ,随着α的增大,斜率k也增大;当 时,斜率 ,随着α的增大,斜率k也增大. 这样,可以求解倾斜角α的范围与斜率k取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线 、 ,其斜率分别为 、 ,有:(1) �0�4 ;(2) �0�4 .2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x轴;….直线的点斜式方程1. 点斜式:直线 过点 ,且斜率为k,其方程为 .2. 斜截式:直线 的斜率为k,在y轴上截距为b,其方程为 .3. 点斜式和斜截式不能表示垂直x轴直线. 若直线 过点 且与x轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为 ,或 . 4. 注意: 与 是不同的方程,前者表示的直线上缺少一点 ,后者才是整条直线.直线的两点式方程1. 两点式:直线 经过两点 ,其方程为 , 2. 截距式:直线 在x、y轴上的截距分别为a、b,其方程为 .3. 两点式不能表示垂直x、y轴直线;截距式不能表示垂直x、y轴及过原点的直线.4. 线段 中点坐标公式 .直线的一般式方程1. 一般式: ,注意A、B不同时为0. 直线一般式方程 化为斜截式方程 ,表示斜率为 ,y轴上截距为 的直线.2. 与直线 平行的直线,可设所求方程为 ;与直线 垂直的直线,可设所求方程为 . 3. 已知直线 的方程分别是: ( 不同时为0), ( 不同时为0),则两条直线的位置关系可以如下判别:(1) ; (2) ;(3) 与 重合 ; (4) 与 相交 .如果 时,则 ; 与 重合 ; 与 相交 . 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组 . 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程 为直线系,所有的直线恒过一个定点,其定点就是 与 的交点. 两点间的距离1. 平面内两点 , ,则两点间的距离为: .特别地,当 所在直线与x轴平行时, ;当 所在直线与y轴平行时, ;点到直线的距离及两平行线距离1. 点 到直线 的距离公式为 .2. 利用点到直线的距离公式,可以推导出两条平行直线 , 之间的距离公式 ,推导过程为:在直线 上任取一点 ,则 ,即 . 这时点 到直线 的距离为