本文目录一览:
初一数学知识点有哪些?
初一数学知识点如下:
1、不等式两边加(或减)同一个数(或式子),不等号的方向不变。
2、把两个一元一次不等式合在起来,就组成了一个一元一次不等式组。
3、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
4、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线。
5、相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
初一下册地理重点知识点的归纳有哪些?
初一下册地理重点知识点的归纳有如下:
1、地球和太阳的距离遥远 当一个刚落地的婴儿乘坐新干线去太阳时 他已经80几岁了 ;但太阳光到达地球的时间只要8分钟。
2、曾经生活在地球上的所有人口的10%;现在仍生活在这个世界上,从古到今一共有大约600亿人;十分之一;也就是60亿还活着。
3、地球上每一秒就会发生100次雷击。每次打雷时,都会产生臭氧。这给大气层上部的臭氧层源源不断注入原料。
4、地球和太阳的距离遥远。 当一个刚落地的婴儿乘坐新干线去太阳时 ,他已经80几岁了 ,但太阳光到达地球的时间只要8分钟。
5、闪电温度数倍于太阳表面温度一束落到地面的闪电携带有1亿至10亿伏的电力,温度能达到5万华氏度,是太阳表面温度的3至4倍。
初一数学知识点有哪些?
初一数学知识点如下:
1、0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。
2、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
3、在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式。
4、有理数中1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。
5、数轴的作用:所有的有理数都可以用数轴上的点来表达。
初中一年级数学知识点有哪些?
如下:
1、有理数的加法法则
两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得零。
一个数同零相加,仍得这个数。
2、有理数加法的运算律
加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a。
加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)。
3、有理数减法法则:减去一个数,等于加这个数的相反数。即a-b=a+(-b)。
4、有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
单项式、多项式的概念
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
初中一年级数学知识点是什么?
初中一年级上期数学知识点:
第一章有理数。
一、知识框架。
二、知识概念。
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数。
(2)有理数的分类:①②。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数。
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离。
(2)绝对值可表示为:或;绝对值的问题经常分类讨论。
5.有理数比大小:
(1)正数的绝对值越大,这个数越大。
(2)正数永远比0大,负数永远比0小。
(3)正数大于一切负数。
(4)两个负数比大小,绝对值大的反而小。
(5)数轴上的两个数,右边的数总比左边的数大。
(6)大数-小数>0,小数-大数<0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数。
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)。
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘。
(2)任何数同零相乘都得零。
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc)。
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
13.有理数乘方的法则:
(1)正数的任何次幂都是正数。
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a -b)n=-(b-a)n ,当n为正偶数时:(-a)n =an或(a-b)n=(b-a)n 。
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方。
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂。
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题。
体验数学发展的一个重要原因是生活实际的需要。激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章整式的加减。
一、知识框架。
二、知识概念。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章一元一次方程。
一、知识框架。
二、知识概念。
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)。
4.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:…………多用于“行程问题”。
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间。
(2)工程问题:工作量=工效·工时。
(3)比率问题:部分=全体·比率。
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度。
(5)商品价格问题:售价=定价·折·,利润=售价-成本。
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a。
S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h。