黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

集合及其表示方法的知识框架(集合的表示方法与分类)

本文目录一览:

集合的含义与表示

含义

集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。例如全中国人的集合,它的元素就是每一个中国人。我们通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。[1] 若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S。一般的我们把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。

表示方法

表示集合的方法通常有三种。

列举法

列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。

列举法还包括尽管集合的元素无法一一列举。

描述法

{代表元素|满足的性质}

设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}

符号法

N:非负整数集合或自然数集合{0,1,2,3,…}

N*或N+:正整数集合{1,2,3,…}

Z:整数集合{…,-1,0,1,…}

Q:有理数集合

Q+:正有理数集合

Q-:负有理数集合

R:实数集合(包括有理数和无理数)

R+:正实数集合

R-:负实数集合

C:复数集合

∅:空集合(不含有任何元素的集合称为空集合,又叫空集)

集合的重要知识点(框架图)

1.集合唯一性,确定性,互异性,元素与集合之间的关系(属于,不属于) 集合与集合的关系(包含,不包含,真包含)

2集合的运算,交集,补集,空集,全集

渣攻光b5lW 2014-10-10

集合的概念与表示方法 表示方法

集合的表示方法:(1)例举法:常用于表示有限集合,把集合中的所有元素一一列举出来,并用逗号隔开,写在大括号内,这种表示集合的方法叫做列举法.{1,2,3,……}(2)描述法:常用于表示无限集合,把集合...

集合的概念与表示方法

集合的表示方法:

(1)例举法:

常用于表示有限集合,把集合中的所有元素一一列举出来,并用逗号隔开,写在大括号内,这种表示集合的方法叫做列举法。{1,2,3,……}

(2)描述法:

常用于表示无限集合,把集合中元素的公共属性用文字、符号或式子等描述出来,写在大括号内,这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0xπ}

集合数学知识点是什么?

集合数学知识点如下:

1、集合的表示方法:常用的有列举法、描述法和图文法。

2、并集:A∪B={x| x∈A或x∈B}。

3、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

4、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

5、集合中的元素必须是确定的。即确定了一个集合,任何一个元素是不是这个集合的元素也就确定了。

集合的四种表示方法是什么?

列举法、描述法、图像法、符号法。

1、列举法

列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。

2、描述法

描述法的形式为{代表元素|满足的性质}。设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。

3、图像法

图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法  。

4、符号法

有些集合可以用一些特殊符号表示,如:N::非负整数集合或自然数集合{0,1,2,3,…}、Z:整数集合{…,-1,0,1,…}、Q:有理数集合、Q+:正有理数集合、Q-:负有理数集合、R:实数集合(包括有理数和无理数)。

扩展资料

一、集合的表示

假设有实数x y:

[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;

(x,y):小括号是不包括边界,即表示大于x、小于y的数。

二、集合的特性

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。

三、交并集

1、交集定义:由属于A且属于B的相同元素组成的集合,记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}, 如右图所示。注意交集越交越少。若A包含B,则A∩B=B,A∪B=A 。如:集合 {1,2,3} 和 {2,3,4} 的交集为 {2,3}。即{1,2,3}∩{2,3,4}={2,3}。

2、并集定义:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B},如右图所示。注意并集越并越多,这与交集的情况正相反。

如:集合{1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不属于质数集合 {2, 3, 5, 7, 11, …} 和偶数集合{2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。

参考资料来源:百度百科—集合

  • 评论列表:
  •  森槿勒言
     发布于 2022-08-21 06:20:48  回复该评论
  • 为y∉S。一般的我们把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。表示方法表示集合的方法通常有三种。列举法列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.