本文目录一览:
七年级数学知识点有哪些?
七年级数学知识点如下:
1、数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2、具有原点,正方向,单位长度的直线叫数轴。
3、加法交换律:两个数相加,交换加数的位置,和不变。
4、数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号。
5、a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。
人教版七年级数学上下册知识点
只有上册,不好意思啊~
第一章 有理数
1.1 正数和负数
正数和负数的概念
用正,负数表示具有相反意义的量
1.2 有理数
有理数的有关概念
有理数的分类
数集的概念
数轴的概念
数轴上的点与有理数之间的关系
相反数
绝对值
有理数的大小比较
1.3有理数的加减法
有理数的加法法则
有理数的加法运算律
有理数的减法法则
有理数的加减混合运算
用计算器对有理数加减混合运算进行计算
1.4有理数的乘除法
有理数的乘法法则
倒数的概念
有理数的乘法运算律
项,项的系数,合并含有相同字母的项
有理数的除法法则
1.5有理数的乘方
乘方的意义
乘方的法则
有理数的混合运算顺序
科学记数法
科学记数法中的负指数
近似数和有效数字
(没有不等式那一章哦~以上是我自己打的,后面的你进;lm=0si=rn=10ie=gb2312ct=0cl=3f=1rsp=2看看,烧腿哦~我实在打到手酸了~)
七年级下册数学知识点
、在同一个平面内,不相交的两条直线叫做平行线.
2、同位角:两条直线a,b被第三条直线c所截,在截线c的同旁,被截两直线a,b的同一侧的角,这两个角称为同位角.
3、内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.
4、同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.
5、一个图形沿某个方向移动,在移动过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.
6、像0.9x+0.12y=4.6,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程.
7、使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解.
8、由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组.
9、同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解.
10、解方程的基本思想就是“消元”,也就是把解二元一次方程组转化为解一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.
11、对于二元一次方程组,当两个方程的同一个未知数的系数是互为相反数或相同时,可以通过把两个方程的两边相加或相减来消元,转化为一元一次方程求解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.
12、和二元一次方程类似,含有三个未知数,且含有未知数的项的次数都是一次的方程叫做三元一次方程.
13、由三个一次方程组成,并且含有三个未知数的方程组叫做三元一次方程组.
14、一般地,把一个多项式化成几个整式的积的形式,叫做因式分解.
15、一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.
16、如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解,这种分解因式的方法,叫做提取公因式法.
17、把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.
18、一般地,利用公式a2-b2=(a+b)(a-b),或a2±2ab+b2=(a±b)把一个多项式分解因式的方法,叫做公式法.
19、代数式都表示两个整式相除,且除式中含有字母.像这样的代数式叫做分式.
20、把一个分式的分子和分母的公因式约去,叫做分式的约分.
21、约分要约去分子、分母所有的公因
七年级下册数学知识点总结
第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角