本文目录一览:
初一第一单元数学知识总结归纳
对于初一的学生来说,数学是很重要的一门学科,我整理了数学第一单元的知识点。
正数和负数
1、以前学过的0以外的数前面加上负号“-”的书叫做负数。
2、以前学过的0以外的数叫做正数。
3、数0既不是正数也不是负数,0是正数与负数的分界。
4、在同一个问题中,分别用正数和负数表示的量具有相反的意义
有理数
正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
数轴
1、规定了原点、正方向、单位长度的直线叫做数轴。
2、数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:(1)数轴的原点、正方向、单位长度三要素,缺一不可。
(2)同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
相反数
1、只有符号不同的两个数叫做互为相反数。
2、数轴上表示相反数的两个点关于原点对称。
3、在任意一个数前面添上“-”号,新的数就表示原数的相反数。
绝对值
1、一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
2、一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
3、比较有理数的大小
(1)正数大于0,0大于负数,正数大于负数。
(2)两个负数,绝对值大的反而小。
有理数的运算
1、有理数的加法:
(1)有理数加法法则:
①同号两数相加,去相同的符号,并把绝对值相加;
②绝对值不相等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;
③互为相反数的两个数相加结果为0;
④一个数同0相加,仍得这个数。
(2)有理数加法的运算律:
加法的交换律:a+b+c=a+(b+c);
加法的结合律:(a+b)+c=a+(b+c)
用加法的运算路进行简便运算的基本思路是:先把互为相反数得数相加;把同分母的分数先相加;把相加得整数的数先相加。
2、有理数的减法:
(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加法混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算。
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
4、有理数的除法
有理数除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5。
以上是我整理的数学的知识点,希望能帮到你。
初一数学的知识点归纳
学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初中 一年级数学 上册知识点
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
初一下册数学知识点
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念 总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
初一下学期数学知识点
相交线与平行线
一、知识网络结构
二、知识要点
1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是
邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,
与互为邻补角。+=180°;+=180°;+=180°;
+=180°。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;
=。
5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,
其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,====90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
6、同位角、内错角、同旁内角基本特征:
①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样
的两个角叫同位角。图3中,共有对同位角:与是同位角;
与是同位角;与是同位角;与是同位角。
②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。
③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
初一数学第一章知识点相关 文章 :
★ 初一数学上册第一章知识点归纳
★ 初一数学上册第一章知识点总结
★ 初一数学第一章知识点总结
★ 初一数学第一章知识点总结归纳
★ 初一数学重要知识点总结
★ 初一数学上册知识点归纳
★ 初一数学第1章有理数知识点总结
★ 七年级数学上册知识点总结第一章
★ 初一数学第一单元知识点归纳
★ 初一数学上知识点
初一数学上册知识点归纳
七年级初一上册的数学知识点是奠定中学数学学习的基础,所以新初一的学生最好趁这个暑期将这部分内容学习好。我在这里整理了相关资料,希望能帮助到您。
目录
第一章 有理数
第二章 整式的加减
第三章 一元一次方程
第四章 几何图形初步
第一章 有理数
1.1 正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;
(3)有理数:整数和分数统称有理数。
2、数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;
(2)数轴三要素:原点、正方向、单位长度;
(3)原点:在直线上任取一个点表示数0,这个点叫做原点;
(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)
4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
①有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0;
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;
两数相除,同号得正,异号得负,并把绝对值相除;
0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方
1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a 10。
第二章 整式的加减
2.1 整式
1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
2、单项式的系数:是指单项式中的数字因数;
3、单项数的次数:是指单项式中所有字母的指数的和.
4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.
5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2.2整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:
一去、二找、三合
(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项
第三章 一元一次方程
3.1 一元一次方程
1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:
1)未知数所在的式子是整式(方程是整式方程);
2)化简后方程中只含有一个未知数;
3)经整理后方程中未知数的次数是1.
3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
3.2 、3.3解一元一次方程
在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:
①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;
③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;
④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;
⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。
3.4 实际问题与一元一次方程
一.概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关数量关系;②设出未知数(注意单位);③根据相等关系列出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。
⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案。
二、思想 方法 (本单元常用到的数学思想方法小结)
⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
⑵方程思想:用方程解决实际问题的思想就是方程思想.
⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.
⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
三、数学思想方法的学习
1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.
3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;
⑵是要判断方程的解是否符合题目中的实际意义.
四、应用(常见等量关系)
行程问题:s=v×t
工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本
利率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
第四章 几何图形初步
4.1 几何图形
1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看
6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面 面相 交形成线;线线相交形成点;
⑵点无大小,线、面有曲直;
⑶几何图形都是由点、线、面、体组成的;
⑷点动成线,线动成面,面动成体;
⑸点:是组成几何图形的基本元素。
4.2 直线、射线、线段
1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:如图的直线可记作直线AB或记作直线m.
(1)用几何语言描述右面的图形,我们可以说:
点P在直线AB外,点A、B都在直线AB上.
(2)如图,点O既在直线m上,又在直线n上,我们称直线
m、n 相交,交点为O.
7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.葫芦岛英霸 教育 联盟 18342389605
注意:射线有一个端点,向一方无限延伸.
8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.
注意:线段有两个端点.
4.3 角
1. 角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。如图,角的顶点是O,两边分别是射线OA、OB.
2、角有以下的表示方法:
① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB或∠BOA.
② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.
③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点
处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠、∠1
2、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。
1度=60分 1分=60秒 1周角=360度 1平角=180度
3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。
4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;
如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
5、同角(等角)的补角相等;同角(等角)的余角相等。
6、方位角:一般以正南正北为基准,描述物体运动的方向。
初一数学上册知识点归纳相关 文章 :
1. 初一数学上册人教版知识点归纳
2. 初一数学知识点总结
3. 初一年级上册数学的21个热门知识点
4. 初一上册数学知识点手抄报
5. 初一上册数学第一单元知识点
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
初一上册数学第一单元知识归纳
从小学到初一的学习需要一定的过渡,尤其是数学方面,在学习内容和思维习惯方面都有很大的变化,为此,以下是我分享给大家的初一上册数学第一单元知识点,希望可以帮到你!
初一上册数学第一单元知识点
有理数
知识点一 有理数的分类
有理数的另一种分类(①定义;②符号)
想一想:①零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?
②零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。
知识点二 数轴
1.填空
① 规定了唯一的原点,正方向和单位长度 (三要素)的直线叫做数轴。
② 比-3大的负整数是-2,-1。
③与原点的距离为三个单位的点有2个,他们分别表示的有理数是3,-3。
2.请画一个数轴,并检查它是否具备数轴三要素?
3.选择题
① 在数轴上,原点及原点左边所表示的数是( )
A整数 B负数 C非负数 D非正数
②下列语句中正确的是( )
A数轴上的点只能表示整数
B数轴上的点只能表示分数
C数轴上的点只能表示有理数
D所有有理数都可以用数轴上的点表示出来
知识点三 相反数
相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。
知识点四 绝对值
1.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。
2.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。
3.比较两个数的大小关系
数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数,由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
知识点五 有理数加减法
1.同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
2.互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
知识点六 乘除法法则
1.两数相乘,同号得 正 ,异号得 负 ,并把绝对值 相乘 。 0乘以任何数,都得 0 。
2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为 偶数 时,积为正;负因数的个数为 奇数 时,积为负。
3.两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 。0除以任何一个不等于0的数,都得 0 。
4.有理数中仍然有:乘积是1的两个数互为 倒数 。
5.除以一个不等于0的数等于乘以这个数的 倒数 。
知识点七 乘方
乘方定义:求n个相同因数的积的运算,叫做乘方。
在a的n次方中,底数是a,指数是n,幂是乘方的结果;读作:a的n次方 或a 的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
知识点八 运算律及混合运算
1.加法交换律:a+b=b+a
1.加法交换律:a+b=b+a
2.乘法交换律:a·b=b·a
3.加法结合律:a+(b+c)=(a+b)+c
4.乘法结合律:a·(b·c)=(a·b)·c
5.乘法分配律:a·(b+c)=ab+ac
6.有理数混合运算顺序:先乘方;再乘除;最后算加减。
7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行 。
8.同级运算, 从左到右进行 。
知识点九 近似数
1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。
2.近似数的分类
(1)具体近似数(如30.2、58.0 …)
(2)带单位近似数(如2.4万…)
(3)科学记数法
3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。
4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。
求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。
例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011。
初一数学学习方法
1.突出一个“勤”字(克服一个“惰”字)
数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”
“勤能补拙是良训,一分辛劳一分才:
我们在学习的时候要突出一个勤字,克服一个“懒”字,怎么突出“勤”字
“聪”:怎么个勤法,从这个字面上来看,要做到五勤:“耳勤”“眼勤”(耳朵听,眼睛看,接受信息)
“口勤”(讨论,回答问题,而不是讲话,消化信息)“脑勤”(善于思考问题,积极思考问题——吸收、储存信息)那是不是做到以上四点就行了呢?不是。这个字还有缺陷,在聪下面加上“手”
“手勤”(动手多实践,不仅光做题,做课件,做模型)
这样的人聪明不聪明?
最大的提高学习效率,首先要做到—— 上课认真听讲(这是根本)回家先复习再做题如果课听不好,就别想消化知识
2.学好初中数学还有两个要点,要狠抓两个要点:
学好数学,一要(动手),二要(动脑)。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知想象之间有什么联系,多问几个为什么
动手就是多实践,多做题,要“拳不离手”(武术)“曲不离口”(唱歌)
同学就是“题不离手”,这两个要点大家要记住。
“动脑又动手,才能最大地发挥大脑的效率”
3.做到“三个一遍”
大家听过“失败是成功之母”听过“重复是学习之母”吗?
培根(18-19世纪英国的哲学家)——“知识就是力量”
“重复是学习之母”
如何重复,我给你们解释一下:
“上课要认真听一遍,动手推一遍,想一遍”
“下课 看 ”
“考试前 ”
4.重视“四个依据”
读好一本教科书——它是教学、中考的主要依据;
记好一本笔记 ——它是教师多年经验的结晶;
做好做净一本习题集——它是使知识拓宽;
记好一本心得笔记,最好每人自己准备一本错题集
初一数学学习建议
1.课前做什么,预习。有的同学会认为预习是浪费时间,上课听老师讲讲不就可以了,为什么还要花时间预习。其实预习非但不浪费时间,而且有很大的益处。首先,预习是对自己自学能力的锻炼。老师不可能教给你全部的知识,很多的知识都是靠自己自学得到的,这就需要我们有良好的自学能力。其次,通过自己预习得到的要比通过上课听老师讲得到的印象要深刻的多。
那该如何预习,预习些什么内容呢?第一,要看课本,看课本上的基本概念和基本例题,对这部分内容要做到理解。因为这就是基础,万变不离其宗,后面的任何变化都离不开这个基础。第二,在理解基本概念的基础上完成课后的随堂练习。因为通过什么来检测你是否理解了概念,只有通过题目。课后的随堂练习的设置就是理解基本概念后的简单的运用。如果预习的过程中有不懂的地方,要在书上做好记号,上课时就要着重听这部分内容;如果内容简单,自己能理解,那上课时就要听老师是如何讲解的,和自己对照一下,看看自己的理解是否正确,或者看看有没有其他的解题思路
2.课上做什么,认真听讲。听课是学习中最重要的环节,是准确的掌握所学知识的关键。课上认真听十分钟胜过课后自己看书三十分钟。那么上课该如何认真听讲,听什么。第一、带着在预习中未懂的问题听课,注意力集中,尽可能把疑点在课中解决。
第二,对于在预习中认为弄懂了的问题,主要听老师的讲解是否和自己的理解一致,纠正自己在预习中对一些知识的片面理解或错误理解。
第三,在预习中没有弄懂的问题,通过老师讲懂了或还有疑问,要在课堂上把关键的地方记下来,课后要及时进行向老师请教,弄懂、弄明白。
第四,在听课中注意不能只听问题的答案,关键是听老师讲解例题的解题思路,明白了解题思路,你是学会了做这一类题,而不是只是一道题。
例题是为巩固数学知识而讲,例题的作用是举一反三。有人做过这样一个实验:
一个老师带着一个初一班,他每周都测验他的学生,而且公开告诉他的学生,考题全部他上课讲的例题。学生开始一片哗然,90%的学生有信心拿满分,只有班上几个最差的学生不敢这么说,很快第一次测验结果出来了,及格率48%,满分率不到8%,第二次情况有所好转,初一时这个班数学成绩与同年级数学特长班平均分相差12.5分。初二时与数学班只差1.5分,比年级平均分高10分。初三毕业,这个班几乎与数学特长班没有区别。
第五,注意听老师在课堂中补充的例题,这些例题通常具有代表性,听老师的解题思路,拓宽自己的知识,要学会自己可以动手解决这一类问题。
猜你喜欢:
1. 7年级数学知识点总结
2. 初一数学重要知识点总结
3. 人教版七年级数学上册复习提纲
4. 七年级数学上册复习提纲
5. 初一上册数学第一单元的思维导图
初一第一单元数学知识归纳
很多同学都需要整理知识点,我整理了一些初一数学第一单元的知识点,一起来看看数学有哪些常考内容吧。
初一数学常考知识点
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0a+b=0a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。
18.混合运算法则:先乘方,后乘除,最后加减。
数学常用计算公式表
(1)长方形面积=长×宽,计算公式s=a b
(2)正方形面积=边长×边长,计算公式s=a × a
(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2
(4)正方形周长=边长× 4,计算公式s= 4a i
(5)平形四边形面积=底×高,计算公式s=a h.
(6)三角形面积=底×高÷2,计算公式s=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式v=a bh
(9)圆的面积=圆周率×半径平方,计算公式s=лr2
(10)正方体体积=棱长×棱长×棱长,计算公式v=a3
以上就是一些数学常用计算的相关信息,供大家参考。