本文目录一览:
- 1、初中函数入门知识点
- 2、excel函数要怎么学
- 3、怎样学习函数?
初中函数入门知识点
函数是我们初中数学学习的重点,接下来给大家分享一些初中函数入门的知识点,带领大家走进函数的世界。
函数入门的相关概念
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
元素输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。
一次函数
(一)在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k≠0),(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。特别的,当b=0时,y=kx(k≠0),称y是x的正比例函数。
(二)一次函数的性质
(1)y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
(2)当x=0时,b为函数在y轴上的交点,坐标为(0,b)。
当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
(3)k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
(4)当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
(5)函数图象性质:当k相同,且b不相等,图像平行;
当k不同,且b相等,图象相交于Y轴;
当k互为负倒数时,两直线垂直。
(6)平移时:上加下减在末尾,左加右减在中间。
二次函数
(一)二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。
(二)二次函数的性质
(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
(2)二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线开口向上;当a0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
(3)一次项系数b和二次项系数a共同决定对称轴的位置。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左侧;当a与b异号时(即ab0),对称轴在y轴右侧。
(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
excel函数要怎么学
首先需要买一本Excel的入门教程,或者参加一下正规的电脑学校的初级班。在这个过程里面,学习者需要大致了解到Excel的基本操作方法和常用功能,诸如输入数据,查找替换,设置单元格格式,排序、汇总、筛选和保存工作簿。如果学习者有其他的应用软件使用经验,特别是其他Office组件的使用经验,这个过程会很快。但是要注意,现在的任务只是扫盲,不要期望过高。千万不要以为知道了Excel的全部功能菜单就是精通Excel了。别说在每项菜单命令后都隐藏着无数的玄机,光是Excel的精髓─—函数,学习者还没有深入接触到。当然,经过这个阶段的学习,学习者应该可以开始在工作中运用Excel了,比如建立一个简单的表格,甚至画一张简单的图表。这就是人们常说的初级用户水平
怎样学习函数?
1,首先把握定义和题目的叙述
2,记住一次函数与坐标轴的交点坐标,必须很熟
3,掌握问题的叙述,通法通则是连立方程(当然是有交点的情况)
函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。
综上,在学习函数的过程中,你要抓住其性质,而反馈到学习方法上你就应该预习(有能力的话最好能够自学)
。函数是高考重点中的重点,也就是高考的命题当中确实含有以函数为纲的思想,怎样学好函数主要掌握以下几点。第一,要知道高考考查的六个重点函数,一,指数函数;二,对数函数;三,三角函数;四,二次函数;五,最减分次函数;六,双勾函数Y=X+A/X(A>0)。要掌握函数的性质和图象,利用这些函数的性质和图象来解题。另外,要总结函数的解题方法,函数的解题方法主要有三种,第一种方法是基本函数法,就是利用基本函数的性质和图象来解题;第二种方法是构造辅助函数;第三种方法是函数建模法。要特别突出函数与方程的思想,数形结合思想 .你还说做题不知道怎样入手,其实函数有很多工具,函数的图像、单调性、奇偶性、周期性、极值,最值、导数等等,这些都是研究函数的工具,也是解题的入手点,先把这些地方的基础题(就是直接要你求单调区间,定义域,值域,周期、奇偶性,导数这一类的题)做好,在相应地做一些应用到这些知识的综合题、类型题,做完之后总结一下,就能发现命题规律与解题思路技巧。