黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

量化交易基础知识(量化交易基础知识教案)

本文目录一览:

什么是量化交易,未来前景如何?知道的讲讲。

量化交易是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式。在国外的期货交易市场,程序化渐渐地成为主流,国内则刚刚起步。今天我们就来分析一下它的优势和劣势。

量化交易到底有何种魅力?

所谓量化交易,是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,减少投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

量化模型=计算机技术+量化分析师制定策略

在股票市场上,量化交易早不是什么新闻,量化从业人士张威告诉人民创投(ID:renminct),在国外七成的交易都是通过计算机决策的,在国内这个数字也接近五成。

过去的股票市场都是靠交易员手动敲键盘来操作的,难免一失手成千古恨,这种行为被戏称为“胖手指”,相比之下,量化交易则如同点石成金的“仙人指”。量化里最美的童话就是“旱涝保收”,牛市也好,熊市也罢,都能大赚特赚。

传统股市量化中最耀眼的明星莫过于詹姆斯西蒙斯,其一手缔造的大奖章基金自1988成立至2009年西蒙斯退休的这21年间,年平均收益率达到了惊人的46%,即使是2007年次贷危机席卷美国,量化基金遭遇滑铁卢的时代,大奖章基金依然获得了骄人的73%的回报率。

量化投资中常用的策略,包括阿尔法策略,CTA策略和套利策略。阿尔法策略通过选股组合,挖掘超越市场整体表现的投资机会;CTA策略通过追随趋势,追涨杀跌;套利策略利用市场价格差异,空手套白狼。每个量化投资策略都是个黑盒子,它们是量化公司的量化投资的核心竞争力,其他外部人无法知道其中的秘密。

旱涝保收,坐收渔利,这样的“黑科技”让币圈的投资者也分外眼红。一家量化交易企业的创始人这样描述自己转行数字货币量化交易的经历:“两年前,炒币的朋友经常24小时看行情,搞得精神疲惫,问我如何在数字货币领域实现量化、程序化交易。他们提供了一个比较简单初级的模型,希望我在它的基础上扩展改造,增加风险管理模块。”

现在大大小小的数字货币量化交易团队采用的量化策略与传统外汇市场、期货市场用来做套利的策略虽然大体相似,可也玩出了新的花样,搬砖就是一个典型。搬砖学名“配对交易”,是指同类型股票或同股异地股票根据价值分析以及股价相对比例相互置换的一种套利方法,由于政策原因,同股异地搬砖并不常见,但在数字货币市场,大大小小的交易所数不胜数,不同交易所之间的价格也常有差异,利用价格差低买高卖,就成为数字货币量化中最简单粗暴的盈利方式。

量化交易的优势

1. 严格的纪律性

量化交易有着严格的纪律性,这样做可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差。一个好的投资方法应该是一个“透明的盒子”。我们的每一个决策都是有理有据的,特别是有数据支持的。如果有人质问我,某年某月某一天,你为什么购买某支股票的化,我会打开量化交易系统,系统会显示出当时被选择的这只股票与其他的股票相比在成长面上、估值上、资金上、买卖时机上的综合评价情况,而且这个评价是非常全面的,比普通投资者拍脑袋或者简单看某一个指标买卖更具有说服力。

2. 完备的系统性

完备的系统性具体表现为“三多”。首先表现在多层次,包括在大类资产配置、行业选择、精选个股三个层次上我们都有模型;其次是多角度,量化交易的核心投资思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;再者就是多数据,就是海量数据的处理。人脑处理信息的能力是有限的,当一个资本市场只有100只股票,这对定性投资基金经理是有优势的,他可以深刻分析这100家公司。但在一个很大的资本市场,比如有成千上万只股票的时候,强大的定量化交易的信息处理能力能反映它的优势,能捕捉更多的投资机会,拓展更大的投资机会。

3. 妥善运用套利的思想

量化交易正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。定性投资大部分时间在琢磨哪一个企业是伟大的企业,那个股票是可以翻倍的股票;与定性投资不同,量化交易大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。

4. 靠概率取胜

这表现为两个方面,一是定量投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用。二是在股票实际操作过程中,运用概率分析,提高买卖成功的概率和仓位控制。

量化交易的风险性

首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。

一二级市场的“级差”是整个套利交易的核心。在现有规则下,ETF套利模式分为两种:一种是通过购买一揽子票,按照兑换比例在一级市场换得相应的ETF份额,然后在二级市场上将ETF卖出;另一种则与前者相反,是在二级市场上购买ETF份额,通过兑换比例换得相应数量的股票,然后在二级市场卖出股票。交易的顺序视股票价格、兑换比例、ETF份额交易价格的变动而决定。

由于股价的变动,ETF套利级差转瞬即逝,因此纷繁复杂的计算过程,目前业内由计算机完成,交易员通过设定计算程序并按照结果决定策略,又或者完全自动让系统在出现套利空间时自动交易,后者便称之为程序化交易。

又因为套利的空间非常小,通常只有万分之几,因此套利交易为了获取适中的收益,参与的资金量都比较大。如果交易员把握不当顺序做反,则投资将出现亏损,这便是级差风险。而为了控制这样的人为风险,券商一般提倡自动化交易,方向由计算机把握,交易员输入交易数量即可。

第二种风险是交易员操作失误,比如光大这次的乌龙指事件,有可能是交易员在输入数量的时候出现了失误。这同时也牵扯到第三种风险,系统软件风险,每个交易员在系统中都有相应的交易权限,包括数量、金额。光大本次涉及的金额坊间一度传闻为70亿元,而数量如此巨大的金额是如何绕过系统权限完成交易的?这个问题的暴露,也导致业内质疑光大风控并未做足。

这个平台犹如币圈的一个缩影,每一个人都心惊胆战地伏在荷官的膝下,聆听骰子撞击的声音,殊不知荷官才是他们中的头号玩家。“职业投资者都知道有庄家”,张威直言。多数的量化平台可能会推出更复杂的止损策略和更出色的套利机制,但除非平台拥有足够雄厚的资本成为游戏的庄家,否则就只有被收割的命运。

量化作为工具,或许无可厚非,但许多数字货币基金以“量化”为名,公开募集资金,行走在法律的边缘。中国人民大学教授赵锡军认为,金融行业和其他行业不同,参与金融活动,动用的是别人的钱,发生风险,别人会有损失,因此政府需要更加严格地监管。

量化交易一念天堂,一念地狱。小编在这里希望广大投资者切莫游走在法律的边缘,以身试法,否则等待你的将是法律的制裁

量化交易是大学的知识吗?

追根溯源,其实量化就是指运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益。“量化”在做的事情,即把投资策略通过数学模型和计算机代码数量化,让投资者可以基于数据分析和动态模拟而合理预测其投资行为的未来走势。

量化的基础是精准定义,许多人以某形态为进场依据,那么精准定义就要求结合明确位置的基础上,以波动点为标准的精准定义。只要是熟悉交易的人都明白,只要成功率和盈亏比配搭合理,交易就等于一只脚踏进了稳定盈利的大门,可问题是如何确定盈亏比和成功率却也是有前提条件的!

如果仅仅是依据自己的交易结果,按照自己的平均亏损和平均盈利得出的盈亏比和成功率,那一定是无效的,因为你没有一单是在同一个框架下的,就好比你拿小学3年级的期末考试成绩+大学毕业时的论文成绩+学日语的随堂测试成绩的平均成绩一样,有任何意义吗?

那么,有效的成功率、盈亏比,就一定是在统一标准的量化统计下得出的,而统一标准就意味着无论是系统的基础标准、参数,还是系统构建完成后的统计标准都必须是一致的。甚至在通过统计结果对系统进行重大修正后的统计都必须是要归零,重新记录统计的。每个交易者都在讨论的成功率和盈亏比,在没有精确定义的量化交易系统情况下,是无法得出有效值的。当然如果你仅仅想知道自己交易一段时间的成果,那另当别论。

投资不是赌博而是博弈,理性的投资者应该学会运用投资策略来实现自己的财富增值。

如何入门量化投资?

首先,你对一个金融衍生品,非常的熟悉,有你的交易计划,包括,进场逻辑、出场逻辑、风险规则、在相对时间里可以赚钱。相对稳定的收益。把你的模式,逻辑让写程序的,开发出来。当然你要自己写程序也行。

几个月前刚刚做量化交易的尝试,运用了10多年自认为有效的技术指标来做统计分析,得出的结论就是完全靠技术指标来指导交易就是扯蛋,在大量样本面前,一切都是假象。由此也彻底放弃了技术指标的研究,真的没有太大用处。

当然也有可能是自己的见识浅薄,也许真的有人单纯靠技术指标而实现稳定盈利的。但这种是否具有持续性,或者说一旦对市场产生了影响指标可能就失效了,这个不好说。现在的想法还是要做基本面方面的研究,把精力放在公司发展,跟随公司共同成长,这才是王道。

说到入门,我是野路子,程序员出身。自己写脚本采集数据到数据库,然后基于数据用C#做计算和统计分析,技术到不是太大的问题,主要还是到底以什么方式来实现盈利。如果仅通过技术指标可行,那么程序就变得重要,因为都是可以经过量化计算的;如果需要靠人脑分析未来公司业务发展规模,这种是很难用程序量化的,不同行业不同公司太复杂了,很难实现量化。

所以我个人认为学习量化交易,应当从基础理论的学习,仓位管理,止盈止损的控制,策略的周期,校验策略,小额实盘交易,小中额度实盘交易,最后大额实盘交易。最最重要的是,要有很好的情绪管理,超强抗压能力,敏锐的洞察力是交易成功并盈利的重要法则!

Python学习,量化交易的应该怎么学

链接:

提取码:4591

华尔街学堂 python金融实务从入门到精通。最近,越来越多的研究员、基金经理甚至财务会计领域的朋友,向小编咨询:金融人需要学Python么?事实上在现在,这已经不是一个问题了。Python已成为国内很多顶级投行、基金、咨询等泛金融、商科领域的必备技能。中金公司、银河证券、南方基金、银华基金在招聘分析师岗位时,纷纷要求熟练掌握Python数据分析技能。

课程目录:

Python在金融资管领域中的应用

安装anaconda步骤

Python基础知识

Python基础金融分析应用

成为编程能手:Python知识进阶

利用Python实现金融数据收集、分析与可视化

......

如何系统地学习量化交易?

首先,我对这个问题是完全不知道怎么回答,为此,我专门去请教了我的老师。

我理解很难有一个定量交易的所谓的系统学习过程,定量的只是手段,交易逻辑是多样的,你可以通过形态描述,追踪市场方法,如不合理的降价,也可以把天体物理、小波分析、神经网络等复杂模型应用其中,你可以做的是K线结构上的策略,也可以做日线或每500毫秒数据进行决策的策略。所有的一切目的就是为了获利,所谓量化和程序化只是实现这一目的的手段。

当你可以通过各种方法来理解定量的关注细节,比如如何避免未来的功能,如何理解每个数据的含义,测试,以及不同测试软件的优缺点,但你没法去“学习”量化交易,因为不会有人把自己真正赚钱的东西拿出来,如何赚钱必须自己去挖掘等等。

量化归根到底是什么不重要,重要的是你要利用自己的特点和优势,在你积累足够长的盘子以量化它为鸡肋之前,继续用单点深度挖掘坑,相信我,只要你有了长板(对,你应该首先把编程学牛了,达到准专业水平,这是最容易且可操作可衡量的点且受用一辈子),100个劝你去撸策略的人都挂了,你的职业生涯还好好的。

一个strategist需要思考策略的思维框架,实现方式,而developer则是侧重了前后端接口,输入输出,界面设置,风控机制,平台拼接等等很多很多方面。其实很不相同吧。

  • 评论列表:
  •  依疚疚爱
     发布于 2022-09-09 10:26:40  回复该评论
  • 理有据的,特别是有数据支持的。如果有人质问我,某年某月某一天,你为什么购买某支股票的化,我会打开量化交易系统,系统会显示出当时被选择的这只股票与其他的股票相比在成长面上、估值上、资金上、买卖时
  •  澄萌嘻友
     发布于 2022-09-09 13:20:08  回复该评论
  • 行业不同公司太复杂了,很难实现量化。所以我个人认为学习量化交易,应当从基础理论的学习,仓位管理,止盈止损的控制,策略的周期,校验策略,小额实盘交易,小中额度实盘交易,最后大额实盘交易。最最重要的是,要有很好的情绪管理
  •  囤梦酷腻
     发布于 2022-09-09 11:24:42  回复该评论
  • 的想法还是要做基本面方面的研究,把精力放在公司发展,跟随公司共同成长,这才是王道。说到入门,我是野路子,程序员出身。自己写脚本采集数据到数据库,然后基于数据用C#做计算和统计分析,技术到不是太大的问题,主要还是到底以什么方式来实现盈利。如果仅通过技术指标可行,那么程序就变得重要,因为都是可以经过

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.