本文目录一览:
苏教版八年级数学上册知识点
做到 总结 、整理 八年级 数学知识点,以及活学活用,切忌死记硬背。下面我给大家分享一些苏教版八年级数学上册知识点,大家快来跟我一起欣赏吧。
苏教版八年级数学上册知识点(一)
实数的概念及分类
1、实数的分类
正有理数
零 有限小数和无限循环小数 实数 负有理数
正无理数
无限不循环小数 负无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,32等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001?等;
(4)某些三角函数值,如sin60等
苏教版八年级数学上册知识点(二)
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。 2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
苏教版八年级数学上册知识点(三)
四边形的相关概念
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于(n?2)?180°; 多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n,则多边形的对角线共n(n?3)2条。从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
苏教版八年级数学上册知识点相关 文章 :
1. 苏教版八年级上册数学教案
2. 八年级上册数学教学工作计划苏教版
3. 八年级物理上册知识点苏教版
4. 苏科版八年级上册数学教案
5. 苏教版八年级数学期末复习卷
初二数学上册知识点归纳
初二期末考试即将来临,为了能让同学们更加高效的复习,下面我整理了初二数学上册知识点归纳,供各位考生参考。
三角形知识概念
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:
(1)三角形的内角和:三角形的内角和为180°
(2)三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于·180°
(4)多边形的外角和:多边形的外角和为360°
(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。
位置与坐标
1、确定位置
在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系
①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应。
3、轴对称与坐标变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
数据的分析
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
初二数学几何知识点归纳有哪些
数学的几何题是同学们的一大死穴,想要学好初二数学几何需要找到正确的学习方法。为了帮助大家更好的学习初二数学几何,下面是我分享给大家的初二数学几何知识点,希望大家喜欢!
初二数学几何知识点一
四边形(含多边形)知识点、概念总结
一、平行四边形的定义、性质及判定
1. 两组对边平行的四边形是平行四边形。
2. 性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
3. 判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
4. 对称性:平行四边形是中心对称图形
二、矩形的定义、性质及判定
1. 定义:有一个角是直角的平行四边形叫做矩形
2. 性质:矩形的四个角都是直角,矩形的对角线相等
3. 判定:
(1)有一个角是直角的平行四边形叫做矩形
(2)有三个角是直角的四边形是矩形
(3)两条对角线相等的平行四边形是矩形
4. 对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定
1. 定义:有一组邻边相等的平行四边形叫做菱形
(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形
(4)菱形的面积等于两条对角线长的积的一半
2. s菱=争6(n、6分别为对角线长)
3. 判定:
(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形
(3)对角线互相垂直的平行四边形是菱形
4. 对称性:菱形是轴对称图形也是中心对称图形
四、正方形定义、性质及判定
1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形
2. 性质:
(1)正方形四个角都是直角,四条边都相等
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形
(4)正方形的对角线与边的夹角是45°
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形
3. 判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等
(2)先判定一个四边形是菱形,再判定出有一个角是直角
4. 对称性:正方形是轴对称图形也是中心对称图形
五、梯形的定义、等腰梯形的性质及判定
1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯
形.一腰垂直于底的梯形是直角梯形
2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等
3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形
4. 对称性:等腰梯形是轴对称图形
六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。
八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。
九、多边形
1. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。
3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
4. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
8. 公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
9. 多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
10. 多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形
(2)n边形共有n(n-3)/2条对角线
初二数学几何知识点二
圆知识点、概念总结
1. 不在同一直线上的三点确定一个圆。
2. 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ① (不是直径)的直径垂直于弦,并且平分弦所对的两条弧
② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3. 圆是以圆心为对称中心的中心对称图形
4. 圆是定点的距离等于定长的点的集合
5. 圆的内部可以看作是圆心的距离小于半径的点的集合
6. 圆的外部可以看作是圆心的距离大于半径的点的集合
7. 同圆或等圆的半径相等
8. 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9. 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11. 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12. ① 直线L和⊙O相交 d
② 直线L和⊙O相切 d=r
③ 直线L和⊙O相离 dr
13. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14. 切线的性质定理:圆的切线垂直于经过切点的半径
15. 推论1 经过圆心且垂直于切线的直线必经过切点
16. 推论2 经过切点且垂直于切线的直线必经过圆心
17. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18. 圆的外切四边形的两组对边的和相等 ,外角等于内对角
19. 如果两个圆相切,那么切点一定在连心线上
20. ① 两圆外离 dR+r
② 两圆外切 d=R+r
③ 两圆相交 R-rr)
④ 两圆内切 d=R-r(Rr) ⑤两圆内含dr)
21. 定理:相交两圆的连心线垂直平分两圆的公共弦
22. 定理:把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23. 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24. 正n边形的每个内角都等于(n-2)×180°/n
25. 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26. 正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27. 正三角形面积√3a/4 a表示边长
28. 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29. 弧长计算公式:L=n兀R/180
30. 扇形面积公式:S扇形=n兀R^2/360=LR/2
31. 内公切线长= d-(R-r) 外公切线长= d-(R+r)
32. 定理:一条弧所对的圆周角等于它所对的圆心角的一半
33. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35. 弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r
初二数学几何知识点三
三角形知识点、概念总结
1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 三角形的分类
3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7. 高线、中线、角平分线的意义和做法
8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9. 三角形内角和定理:三角形三个内角的和等于180°
推论1 直角三角形的两个锐角互余
推论2 三角形的一个外角等于和它不相邻的两个内角和
推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半
10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11. 三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
猜你喜欢:
1. 初三上数学知识点归纳
2. 初中数学知识点归纳
3. 高考必备数学公式知识点
4. 初中数学圆的知识点归纳
5. 3年级数学归纳知识点有哪些