黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

高三数学知识点归纳总结最新5篇(高三数学知识点总结,高三数学知识点整理)

本文目录一览:

高三数学知识点归纳整理

与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。下面是我给大家带来的 高三数学 知识点归纳整理,以供大家参考!

高三数学知识点归纳整理

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题 方法 :优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高三数学复习知识点归纳 总结

不等式分类:

不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“”“”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为,≥,中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

高三数学最新知识点

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是容易理解的。但为什么说q是p的必要条件呢?事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=q,同时q=p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p=q

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学知识点归纳整理相关 文章 :

★ 高三数学知识点梳理汇总

★ 高三数学各章节的知识点归纳

★ 高三数学知识点考点总结大全

★ 高三数学知识点归纳

★ 高三数学考试必考的重要知识点归纳

★ 高三数学复习知识点总结

★ 高三数学相关的知识点归纳

★ 高三数学知识点总结

★ 高三数学知识点总结归纳

★ 高三年级数学知识点归纳

高三数学重点知识点

总结 是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,因此我们要做好归纳,写好总结。那么总结有什么格式呢?下面是我给大家带来的 高三数学 重点知识点,以供大家参考!

高三数学重点知识点

1、课程内容:

必修课程由5个模块组成:

必修1:集合、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2、重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的'证明、不等式的解法、绝对值不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学知识点归纳总结

第一部分集合

(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数

1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配 方法 ;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法

3、复合函数的有关问题

(1)复合函数定义域求法:

①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:

①首先将原函数分解为基本函数:内函数与外函数;

②分别研究内、外函数在各自定义域内的单调性;

③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

⑵是奇函数;

⑶是偶函数;

⑷奇函数在原点有定义,则;

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;

2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;

3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

高 三年级数学 知识点归纳

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x+

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若f(x)为增(减)函数,则-f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的.单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高三数学重点知识点相关 文章 :

★ 高三数学考试必考的重要知识点归纳

★ 高三数学知识点考点总结大全

★ 高三数学复习重要知识点

★ 高三数学必考知识点

★ 高三数学的主要知识点笔记

★ 高三数学第一轮复习知识点

★ 高三数学知识点大全

★ 高三数学知识点归纳

★ 高三数学知识点梳理汇总

高三数学知识点总结归纳

对于数学的学习来说,有很多的同学是非常的想知道 高三数学 知识点有哪些,下面给大家分享一些关于高三数学知识点 总结 归纳,希望对大家有所帮助。

高三数学知识点总结1

向量

1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

2.几个概念:零向量、单位向量(与 共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

3.两非零向量平行(共线)的充要条件

4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2.

5.三点共线;

6.向量的数量积:

高三数学知识点总结2

不等式

1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

3.常用不等式有: (根据目标不等式左右的运算结构选用)

a、b、c R, (当且仅当 时,取等号)

4.比较大小的 方法 和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

5.含绝对值不等式的性质:

6.不等式的恒成立,能成立,恰成立等问题

(1)恒成立问题

若不等式 在区间 上恒成立,则等价于在区间上

若不等式 在区间 上恒成立,则等价于在区间上

(2)能成立问题

(3)恰成立问题

若不等式在区间上恰成立, 则等价于不等式的解集为 .

若不等式在区间上恰成立, 则等价于不等式的解集为 ,

高三数学知识点总结3

直线和圆

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最简方程 ;标准方程 ;

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程

过圆 上一点 圆的切线方程

过圆 上一点 圆的切线方程

如果点在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.

如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程, (为圆心 到直线的距离).

7.曲线与的交点坐标方程组的解;

过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

高三数学知识点总结4

圆锥曲线

1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

(1)注意:①圆锥曲线第一定义与配方法的综合运用;

②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .

重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

高三数学知识点总结5

直线、平面、简单多面体

1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.

3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体

6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.

7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

高三数学知识点总结归纳相关 文章 :

★ 高三数学知识点考点总结大全

★ 高三数学重点知识总结大全

★ 高三数学知识点总结及数学学习方法

★ 高三数学知识点梳理汇总

★ 高三数学重要知识点总结大全

★ 高三数学知识点归纳

★ 高三数学必考知识点复习总结

★ 高三数学知识点归纳最新

★ 高三数学必考知识点汇总

★ 高三年级数学知识点整理总结

高三数学文科知识点总结

高中 学习 方法 其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,分数也会大幅度上涨。以下是我给大家整理的 高三数学 文科知识点 总结 ,希望能帮助到你!

高三数学文科知识点总结1

随机抽样

简介

(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;

优点:操作简便易行

缺点:总体过大不易实行

方法

(1)抽签法

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

(抽签法简单易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)

(2)随机数法

随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。

分层抽样

简介

分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。

定义

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。

整群抽样

定义

什么是整群抽样

整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。

优缺点

整群抽样的优点是实施方便、节省经费;

整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

实施步骤

先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内所有个体或单元均进行调查。抽样过程可分为以下几个步骤:

一、确定分群的标注

二、总体(N)分成若干个互不重叠的部分,每个部分为一群。

三、据各样本量,确定应该抽取的群数。

四、采用简单随机抽样或系统抽样方法,从i群中抽取确定的群数。

例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。

与分层抽样的区别

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;

分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

系统抽样

定义

当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。

步骤

一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:

(1)先将总体的N个个体编号。有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;

(2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n;

(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);

(4)按照一定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本。

高三数学文科知识点总结2

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=q,则我们称p为q的充分条件,q是p的必要条件。这里由p=q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=q”等价的逆否命题是“非q=非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=q,同时q=p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p=q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A=B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学文科知识点总结3

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,

有a-b0?;a-b=0?;a-b0?.

另外,若b0,则有1?;=1?;1?.

概括为:作差法,作商法,中间量法等.

3.不等式的性质

(1)对称性:ab?;

(2)传递性:ab,bc?;

(3)可加性:ab?a+cb+c,ab,cd?a+cb+d;

(4)可乘性:ab,c0?acbc;ab0,cd0?;

(5)可乘方:ab0?(n∈N,n≥2);

(6)可开方:ab0?(n∈N,n≥2).

复习指导

1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

3.“两条常用性质”

(1)倒数性质:①ab,ab0?;②a0

③ab0,0;④0

(2)若ab0,m0,则

①真分数的性质:;(b-m0);

②假分数的性质:;(b-m0).

高三数学文科知识点总结相关 文章 :

★ 高三文科数学知识要点总结

★ 高三文科数学常考知识点归纳整理

★ 高三文科数学常考知识点整理归纳

★ 2016高三文科数学知识点

★ 高考文科数学知识点总结

★ 高三文科数学常考知识点归纳

★ 高三数学知识点考点总结大全

★ 高考文科数学知识点归纳

★ 高三数学必考知识点复习总结

★ 2020高考文科数学知识点总结

高三数学知识点归纳

;     高三数学知识点汇总归纳

      在日复一日的学习中,大家都背过各种知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。那么,都有哪些知识点呢?以下是小编为大家整理的高三数学知识点汇总归纳,仅供参考,希望能够帮助到大家。

高三数学知识点归纳 篇1

高三上册数学知识点整理

      1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

      2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

      方程有实数根函数的图象与轴有交点函数有零点.

      3、函数零点的求法:

      求函数的零点:

      (1)(代数法)求方程的实数根;

      (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

      4、二次函数的零点:

      二次函数.

      1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

      2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

      3)△

人教版高三数学知识点总结

      1.定义:

      用符号〉,=,〈号连接的式子叫不等式。

      2.性质:

      1不等式的两边都加上或减去同一个整式,不等号方向不变。

      2不等式的两边都乘以或者除以一个正数,不等号方向不变。

      3不等式的两边都乘以或除以同一个负数,不等号方向相反。

      3.分类:

      1一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

      2一元一次不等式组:

      a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

      b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

      4.考点:

      1解一元一次不等式(组)

      2根据具体问题中的数量关系列不等式(组)并解决简单实际问题

      3用数轴表示一元一次不等式(组)的解集

高三数学知识点归纳 篇2

1、圆柱体:

      表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

      表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

      a-边长,S=6a2,V=a3

4、长方体

      a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱

      S-底面积h-高V=Sh

6、棱锥

      S-底面积h-高V=Sh/3

7、棱台

      S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

      S1-上底面积,S2-下底面积,S0-中截面积

      h-高,V=h(S1+S2+4S0)/6

9、圆柱

      r-底半径,h-高,C―底面周长

      S底―底面积,S侧―侧面积,S表―表面积C=2πr

      S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

      R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、直圆锥

      r-底半径h-高V=πr^2h/3

12、圆台

      r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

13、球

      r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺

      h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

高三数学知识点归纳 篇3

复数的概念:

      形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。

复数的表示:

      复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:

      (1)复平面、实轴、虚轴:

      点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数

      (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即

      这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

      这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:

      复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=

虚数单位i:

      (1)它的平方等于-1,即i2=-1;

      (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立

      (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

      (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数模的性质:

      复数与实数、虚数、纯虚数及0的关系:

      对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

高三数学知识点归纳 篇4

1.不等式的定义

      在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

      两个实数的大小是用实数的运算性质来定义的,

      有a-b0?;a-b=0?;a-b

      另外,若b0,则有1?;=1?;

      概括为:作差法,作商法,中间量法等.

3.不等式的性质

      (1)对称性:ab?;

      (2)传递性:ab,bc?;

      (3)可加性:ab?a+cb+c,ab,cd?a+cb+d;

      (4)可乘性:ab,c0?acbc;ab0,cd0?;

      (5)可乘方:ab0?(n∈N,n≥2);

      (6)可开方:ab0?(n∈N,n≥2).

复习指导

      1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

      2.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

      3.“两条常用性质”

      (1)倒数性质:1ab,ab0?      3ab0,0;40

      (2)若ab0,m0,则

      1真分数的性质:

      (b-m0);

高三数学知识点归纳 篇5

不等式的解集:

      1能使不等式成立的未知数的值,叫做不等式的解。

      2一个含有未知数的不等式的所有解,组成这个不等式的解集。

      3求不等式解集的过程叫做解不等式。

不等式的判定:

      1常见的不等号有“”“      2在不等式“ab”或“a

      3不等号的开口所对的数较大,不等号的尖头所对的数较小;

      4在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

高三数学知识点归纳 篇6

等式的性质:

      1不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:

      (1)abb

      (2)ab,bcac(传递性)

      (3)aba+cb+c(c∈R)

      (4)c0时,abacbc

      c

      bac

运算性质有:

      (1)ab,cda+cb+d。

      (2)ab0,cd0acbd。

      (3)ab0anbn(n∈N,n1)。

      (4)ab0(n∈N,n1)。

      应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

      2关于不等式的性质的考察,主要有以下三类问题:

      (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

      (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

      (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学集合复习知识点

      任一A,B,记做AB

      AB,BA,A=B

      AB={|A|,且|B|}

      AB={|A|,或|B|}

      Card(AB)=card(A)+card(B)-card(AB)

      (1)命题

      原命题若p则q

      逆命题若q则p

      否命题若p则q

      逆否命题若q,则p

      (2)AB,A是B成立的充分条件

      BA,A是B成立的必要条件

      AB,A是B成立的充要条件

      1.集合元素具有1确定性;2互异性;3无序性

      2.集合表示方法1列举法;2描述法;3韦恩图;4数轴法

(3)集合的运算

      1A∩(B∪C)=(A∩B)∪(A∩C)

      2Cu(A∩B)=CuA∪CuB

      Cu(A∪B)=CuA∩CuB

(4)集合的性质

      n元集合的字集数:2n

      真子集数:2n-1;

      非空真子集数:2n-2

高中数学集合知识点归纳

1、集合的概念

      集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、来表示。元素常用小写字母a、b、c、来表示。

      集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

  • 评论列表:
  •  依疚稚然
     发布于 2022-09-20 09:06:57  回复该评论
  • 向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2. 5.三点共线; 6.向量的数量积: 高三数学知识点总结2 不等式 1.(1)解不等式是求不等式的解集,最后务必有
  •  森槿戈亓
     发布于 2022-09-20 05:54:35  回复该评论
  • 有重要的作用。那么,都有哪些知识点呢?以下是小编为大家整理的高三数学知识点汇总归纳,仅供参考,希望能够帮助到大家。 高三数学知识点归纳 篇1 高三上册数学知识点整理      1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。      2、函数零点的意义:函数的零点就是方程实数根,
  •  末屿颇倔
     发布于 2022-09-20 11:27:15  回复该评论
  • “      2在不等式“ab”或“a      3不等号的开口所对的数较大,不等号的尖头所对的数较小;      4在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。 高三数学知识点归纳 篇6 等式的性质:      1不等

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.