黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

高一向量知识点乐乐课堂(大一高数向量知识点)

本文目录一览:

高中数学向量知识点

1、向量的加法:

AB+BC=AC

设a=(x,y) b=(x',y')

则a+b=(x+x',y+y')

向量的加法满足平行四边形法则和三角形法则。

向量加法的性质:

交换律:

a+b=b+a

结合律:

(a+b)+c=a+(b+c)

a+0=0+a=a

2、向量的减法

AB-AC=CB

a-b=(x-x',y-y')

若a//b

则a=eb

则xy`-x`y=0·

若a垂直b

则a·b=0

则xx`+yy`=0

3、向量的乘法

设a=(x,y) b=(x',y')

用坐标计算向量的内积:a·b(点积)=x·x'+y·y'

a·b=|a|·|b|*cosθ

a·b=b·a

(a+b)·c=a·c+b·c

a·a=|a|的平方

向量的夹角记为a,b∈[0,π]

Ax+By+C=0的方向向量a=(-B,A)

(a·b)·c≠a·(b·c)

a·b=a·c不可推出b=c

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y)

x=(x1+λx2)/(1+λ)

则有

y=(y1+λy2)/(1+λ)

我们把上面的式子叫做有向线段P1P2的定比分点公式

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣*∣a∣,当λ>0时,与a同方向;当λ<0时,与a反方向。

实数λ叫做向量a的系数,乘数向量的几何意义时把向量a沿着的方向或反方向放大或缩小。

高中数学关于向量的知识点详解

高中数学关于向量的知识点

1.向量的基本概念

(1)向量

既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.

向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)

(5)平行向量

方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.

若向量a、b平行,记作a∥b.

规定:0与任一向量平行.

(6)相等向量

长度相等且方向相同的向量叫做相等向量.

①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.

②向量a,b相等记作a=b.

③零向量都相等.

④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关.

2.对于向量概念需注意

(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.

(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.

(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.

3.向量的运算律

(1)交换律:α+β=β+α

(2)结合律:(α+β)+γ=α+(β+γ)

(3)数量加法的分配律:(λ+μ)α=λα+μα

(4)向量加法的分配律:γ(α+β)=γα+γβ

高中数学学习的窍门

1不乱买辅导书。

关于数学,我一本辅导书都没买(高三),从高三发的第一张卷子起到最后一张我高考结束后全部留着,厚厚的三打。这些卷子留好后你从第一张看的时候和辅导书是一样一样的 因为高三复习的时候都是按章节来的,所以条目很清晰。

1每一张卷子不留题。

不留错题和不明白的题,把每一个题目都弄明白,不会的就去问别人问老师。我一开始也不好意思去问老师,因为我基础太差了,可能我不会的题其实只是一个公式题,所以我都是问周围的同学,所幸我周围一圈学霸,每一个都被我问烦了要 在这里要感谢一下他们~

1整理错题。

这个其实真的挺重要,但我前面也说过,我是一个超懒的人,所以我没有做 但是我在后期快三模的时候意识到了这个的重要性,所以把所有卷子集中起来把错题回顾了一遍,不一定动笔(太懒)去做,在脑子里想一遍,一般只用不到一分钟一道,这个时间什么时候都抽得出来的。

1整理笔记。

关于数学的笔记我有两本,一个是我们老师总结的一些方法和技巧,一些公式的记忆以及法则概念之类的(这个要好好记!做题的时候经常用到!没有公式做题简直是… )另一本是关于一些好题难题错题典型题,把这些题从纸上剪下来贴到本子上再做一遍,到高考前我把这个错题本又全部重新做了一遍(当然,这个由于太懒,有的题有点三天打渔两天晒网 )

1关于卷子。

由于笔记要剪下来(这年头谁还自己抄题快去给我站墙角!)贴到笔记上,所以我都是要两张卷子(老师都是直接问谁要两张自己留下就行),两张卷子一张自己做,另一张用来剪题(有的时候正反面都有就很讨厌啦 所以我有的时候拿三张 )

ps:自己做的那张卷子呢做完听题的时候要做好标记,答主有一套晨光的彩色笔,还蛮好用,把不会的题在题号标一种颜色,会但是典型的一种颜色。

一定要把做题过程在卷子上写清楚!一定要把做题过程在卷子上写清楚!一定要把做题过程在卷子上写清楚!重要的事说三遍!否则你看卷子时说忘就忘哭都没地方哭

1关于老师。

答主老师长的帅啊 大于一切优点啊 要努力寻找老师的闪光点,毕竟老师对于学习兴趣还是影响很大的。

1补充。

我们老师当时特别喜欢给我们做模拟题,都是他做了的题然后剪贴出来的卷子,所以每道题都很好也是我说过不留题的原因。因为做套题的时候就算你很多都不懂,但是选择题中的集合那些题总都会做,不至于像做导数数列那些单元的卷子一样欲哭无泪=_=(数学不好的人都懂我!)所以可以多做套题来增强自己的信心。

1信心。

高一数学平面向量知识点总结

平面向量是高中数学中基本内容,也是联系代数与几何的一种工具,为高考的重点内容。下面我给大家带来 高一数学 平面向量知识点,希望对你有帮助。

目录

高一数学平面向量知识点

高一数学知识点

高一数学学习方法

高一数学平面向量知识点

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

向量的运算

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ 0时,λa的方向和a的方向相同,当λ 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

高一数学知识点

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

高一 数学 学习 方法

认真听课做笔记

在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

把握教材去理解

要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习高一数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

提高思维敏捷力

如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

避免遗留问题

在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

高一数学平面向量知识点 总结 相关 文章 :

★ 高一数学平面向量知识点总结

★ 高一数学平面向量知识点

★ 高中数学必修4平面向量知识点总结

★ 数学必修4向量公式归纳

★ 高一数学平面向量知识点分析

★ 高中高一数学知识点总结

★ 数学必修4平面向量公式总结

★ 高中数学必修4平面向量知识点

★ 高一数学知识点总结归纳

★ 高中数学平面解析几何知识点归纳

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

向量知识点是什么?

1、向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。

2、向量的几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。

3、零向量:长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。

4、负向量:如果向量AB与向量CD的模相等且方向相反,那么我们把向量AB叫做向量CD的负向量,也称为相反向量。

5、自由向量:始点不固定的向量,它可以任意的平行移动,而且移动后的向量仍然代表原来的向量。在自由向量的意义下,相等的向量都看作是同一个向量。数学中只研究自由向量。

高一数学平面向量知识点分析

平面向量是高一的知识点,想要学习好需要学生把握好概念和运算,下面是我给大家带来的有关于高中数学平面向量知识点的具体介绍,希望能够帮助到大家。

高一数学平面向量知识点

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

向量的运算

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ 0时,λa的方向和a的方向相同,当λ 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

高一必修二数学平面的基本性质知识点

平面的基本性质

教学目标

1、知识与能力:

(1)巩固平面的基本性质即四条公理和三条推论.

(2)能使用公理和推论进行解题.

2、过程与方法:

(1)体验在空间确定一个平面的过程与方法;

(2)掌握利用平面的基本性质证明三点共线、三线共点、多线共面的方法。

3、情感态度与价值观:

培养学生认真观察的态度,慎密思考的习惯,提高学生的审美能力和空间想象的能力。

教学重点

平面的三条基本性质即三条推论.

教学难点

准确运用三条公理和推论解题.

教学过程

一、问题情境

问题1:空间共点的三条直线能确定几个平面?空间互相平行的三条直线呢?

问题2:如何判断桌子的四条腿的底端是否在一个平面内?

二、温故知新

公理1

如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.

公理2

如果两个平面有一个公共点,那么它们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线.

公理3

经过不在同一条直线上的三点,有且只有一个平面.

推论1

经过一条直线和这条直线外的一点,有且只有一个平面.

推论2

经过两条相交直线,有且只有一个平面.

推论3

经过两条平行直线,有且只有一个平面.

公理 4(平行公理) 平行于同一条直线的两条直线互相平行.

把以上各公理及推论进行对比:

三、数学运用

基础训练:(1)已知: ;求证:直线AD、BD、CD共面.

证明: ——公理3推论1

——公理1

同理可证, , 直线AD、BD、CD共面

【解题反思1】1。逻辑要严谨

2.书写要规范

3.证明共面的步骤:

(1)确定平面——公理3及其3个推论

(2)证线“归” 面(线在面内如: )——公理1

(3)作出结论。

变式1、如果直线两两相交,那么这三条直线是否共面?(口答)

变式2、已知空间不共面的四点,过其中任意三点可以确定一个平面,由这四个点能确定几个平面?

变式3、四条线段顺次首尾连接,所得的图形一定是平面图形吗?(口答)

(2)已知直线 满足: ;求证:直线

证明: ——公理3推论3

——公理1

直线 共面

提高训练:已知 ,求证: 四条直线在同一平面内.

思路分析:考虑由直线a,b确定一个平面,再证明直线c,l在此平面上,但十分困难。因而可以开放思路,考虑确定两个平面,再证明两个平面重合,问题迎刃而解。

证明:

——公理3推论3

——公理3推论3

——公理1

因此,平面 同时经过两条相交直线 所以平面 重合。——公理3推论2

直线 共面

上面方法称为同一法

拓展训练:如图,三棱锥A-BCD中,E、G分别是BC、AB的中点,F在CD上,H在AD上,且有DF:FC=DH:HA=2:3;求证:EF、GH、BD交于一点.[渗透空间问题平面化思想]

思路分析:思路1:开放思路,考虑三个平面,首先证明两条直线在一个面内,并且相交,然后证明交点在两个平面上,据公理2知它在两面唯一的交线——第三条直线上,因此证得三线共点。

证法1:连接 ,

因 E、G分别是BC、AB的中点,故 因DF:FC=DH:HA=2:3,故 ——公理4

共面,由上知, 相交,设交点为O,则 平面 , 平面 ,

所以 直线 所以EF、GH、BD交于一点。

思路2:首先证明直线 GH、BD交于一点P,直线EF 、BD交于一点Q,然后证明两点P、Q重合,进而得出EF、GH、BD交于一点。

证法法2:提示:过点H作HO,使得 ,交点为O,连接OF,证明 ,

延长GH,EF,使它们与直线BD分别交于点P、Q,由三角形相似可以得出OP=OQ.所以点P、Q重合。

链接生活:在正方体木头中,试画出过其中三条棱的中点P、Q、R的平面截得木头的截面形状.

【解题反思2】1。逻辑要严谨

2.书写要规范

3.方法要掌握

(1)证明共面的步骤:

1)确定平面——公理3及其3个推论——公理3及3个推论

2)证线“归” 面(线在面内如: )——公理1

3)作出结论。

(2)证明共线的步骤:

①证所有点在第一个面内(如平面 )——公理1

②证所有点在第二个面内(如平面 ) ——公理1

③结论1:所有点在两个平面的交线上

④结论2:所有点共线——公理2

(3)证明共点的步骤:

1)证交于一个点——公理3及3个推论

2)证此点在二个面内(如平面 ) ——公理1

3)结论1:此点在两个平面的交线上——————公理2

4)结论2:三条线共点

四、回顾小结

本节主要复习了平面三个公理和三个推论,学会了如何使用公理及其推论解题.

五、课外作业(见所发的前置作业)

反馈练习

[ 1.2.1 平面的基本性质(2)]

1、经过同一直线上的3个点的平面( )

A、有且只有1个 B、有且只有3个 C、有无数个 D、有0个

2、若空间三个平面两两相交,则它们的交线条数是( )

A、1或2 B、2或3 C、1或3 D、1或2或3

3、与空间四点距离相等的平面共有( )

A、3个或7个 B、4个或10个 C、4个或无数个 D、7个或无数个

4、四条平行直线最多可以确定( )

A、三个平面 B、四个平面 C、五个平面 D、六个平面

5、四条线段首尾顺次相连,它们最多可确定的平面个数有 个.

6、给出以下四个命题:

①若空间四点不共面,则其中无三点共线;

②若直线l上有一点在平面 外,则l在 外;

③若直线 、 、 中, 与 共面且 与 共面,则 与 共面;

④两两相交的三条直线共面.

其中所有正确的命题的序号是 .

7.点P在直线l上,而直线l在平面 内,用符号表示为( )

A. B. C. D. 8.下列推理,错误的是( )

A. B. C. D. 9.下面是四个命题的叙述语(其中A、B表示点, 表示直线, 表示平面)

① ② ③ ④ 其中叙述方法和推理过程都正确的命题的序号是_______________.

10、已知A、B、C不在同一条直线上,求证:直线AB、BC、CA共面.

11、求证:如果一条直线与两条平行线都相交,那么这三条直线在同一个平面内.

已知:直线 、 、 且 , , ;

求证:直线 、 、 共面.

12、在正方体ABCD-A1B1C1D1中,

①AA1与CC1能否确定一个平面?为什么?

②点B、C1、D能否确定一个平面?为什么?

③画出平面ACC1A1与平面BC1D的交线,平面ACD1与平面BDC1的交线.

谁可以把有关高一数学向量那部分的知识点,易错点,公式总结一下.

设a=(x,y),b=(x',y').1、向量的加法 向量的加法满足平行四边形法则和三角形法则.AB+BC=AC.a+b=(x+x',y+y').a+0=0+a=a.向量加法的运算律:交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c).2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣.当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意.当a=0时,对于任意实数λ,都有λa=0.注:按定义知,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.数与向量的乘法满足下面的运算律 结合律:(λa)•b=λ(a•b)=(a•λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.向量的数量积的坐标表示:a•b=x•x'+y•y'.向量的数量积的运算律 a•b=b•a(交换律); (λa)•b=λ(a•b)(关于数乘法的结合律); (a+b)•c=a•c+b•c(分配律); 向量的数量积的性质 a•a=|a|的平方.a⊥b 〈=〉a•b=0.|a•b|≤|a|•|b|.向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.3、|a•b|≠|a|•|b| 4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c.注:向量没有除法,“向量AB/向量CD”是没有意义的.向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号.定比分点 定比分点公式(向量P1P=λ•向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb.a//b的重要条件是 xy'-x'y=0.零向量0平行于任何向量.[编辑本段]向量垂直的充要条件 a⊥b的充要条件是 a•b=0.a⊥b的充要条件是 xx'+yy'=0.零向量0垂直于任何向量.

这些就是你要的

  • 评论列表:
  •  鹿岛墓栀
     发布于 2022-09-21 18:52:40  回复该评论
  • 和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) =
  •  余安温人
     发布于 2022-09-21 20:09:59  回复该评论
  • ,因为我基础太差了,可能我不会的题其实只是一个公式题,所以我都是问周围的同学,所幸我周围一圈学霸,每一个都被我问烦了要 在这里要感谢一下他们~ 1整理错题。 这个其实真的挺重要,但我前面也说过,我是一个超懒的人,所以我没有做 但是我在后期快三模的时候意识到了这个的重要性,所以把
  •  惑心一镜
     发布于 2022-09-21 19:21:26  回复该评论
  • 五、课外作业(见所发的前置作业) 反馈练习 [ 1.2.1 平面的基本性质(2)] 1、经过同一直线上的3个点的平面( ) A、有且只有1个 B、有且只有3个 C、有无数个 D、有0个 2、若空间三个平面两两相交,

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.