黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

一到六年级必会数学知识点(六年级必考数学知识点)

本文目录一览:

一到六年级数学概念公式大全

一到六年级常用数学概念和公式大全,是考好数学的学生必须掌握的知识,为了让大家更好地备考,我在这里为大家整理了小学一到六年级数学概念公式大全,快来学习学习吧!

算术

1、四则运算

加数+加数=和, 一个加数=和-另一个加数

被减数-减数=差, 减数=被减数-差, 被减数=减数+差

因数×因数=积, 一个因数=积÷另一个因数

被除数÷除数=商, 除数=被除数÷商,被除数=商×除数

有余数的除法: 被除数=商×除数+余数

2、加法交换律:两数相加交换加数的位置,和不变。

3、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

4、乘法交换律:两数相乘,交换因数的位置,积不变。

5、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

6、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

9、什么叫方程式?答:含有未知数的等式叫方程式。

10、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的列法及计算。即列出代有χ的算式并计算。

11、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

12、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

13、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

14、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

15、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

16、分数除以整数(0除外),等于分数乘以这个整数的倒数。

17、真分数:分子比分母小的分数叫做真分数。

18、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

19、带分数:把假分数写成整数和真分数的形式,叫做带分数。

20、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

21、分数的四则运算法则:

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

几何

三角形的面积=底×高÷2,公式 S= a×h÷2

正方形的面积=边长×边长, 公式S= a×a

长方形的面积=长×宽, 公式S= a×b

平行四边形的面积=底×高, 公式S= a×h

梯形的面积=(上底+下底)×高÷2, 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度

长方体的体积=长×宽×高,公式:V=abh

长方体(或正方体)的体积=底面积×高, 公式:V=abh

正方体的体积=棱长×棱长×棱长,公式:V=aaa

圆的周长=直径×π, 公式:L=πd=2πr

圆的面积=半径×半径×π,公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高,公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积,公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高,公式:V=Sh

圆锥的体积=1/3底面×积高,公式:V=1/3Sh

度量

1公里=1千米,1千米=1000米

1米=10分米, 1分米=10厘米, 1厘米=10毫米

1平方米=100平方分米, 1平方分米=100平方厘米

1平方厘米=100平方毫米,

1立方米=1000立方分米, 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克, 1千克= 1000克= 1公斤 = 2市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

一至六年级所有的数学知识及概念

常用的数量关系式

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1、正方形 (C:周长 S:面积 a:边长 )

周长=边长×4 C=4a 面积=边长×边长 S=a×a

2、正方体 (V:体积 a:棱长 )

表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3、长方形( C:周长 S:面积 a:边长 )

周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab

4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)

(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh

5、三角形 (s:面积 a:底 h:高)

面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6、平行四边形 (s:面积 a:底 h:高)

面积=底×高 s=ah

7、梯形 (s:面积 a:上底 b:下底 h:高)

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圆形 (S:面积 C:周长 л d=直径 r=半径)

(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л

9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2

(3)体积=底面积×高 (4)体积=侧面积÷2×半径

10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数

13、和倍问题: 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

14、差倍问题: 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

15、相遇问题

相遇路程=速度和×相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间

16、浓度问题

溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量

17、利润与折扣问题

利润=售出价-成本; 利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比; 利息=本金×利率×时间; 税后利息=本金×利率×时间×(1-20%)

常用单位换算

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算:

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容)积单位换算:

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算: 1元=10角 1角=10分 1元=100分

时间单位换算:

1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

基本概念

第一章 数和数的运算

一 概念

(一)整数

1 整数的意义: 自然数和0都是整数.

2 自然数:

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数.

一个物体也没有,用0表示.0也是自然数.

3计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位.

每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法.

4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位.

5数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a .

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).倍数和约数是相互依存的.

因为35能被7整除,所以35是7的倍数,7是35的约数.

一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身.例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10.

一个数的倍数的个数是无限的,其中最小的倍数是它本身.3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数.

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除..

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除..

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除.

一个数各位数上的和能被9整除,这个数就能被9整除.

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除.例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除.

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除.例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除.

能被2整除的数叫做偶数.

不能被2整除的数叫做奇数.

0也是偶数.自然数按能否被2 整除的特征可分为奇数和偶数.

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数.

1不是质数也不是合数,自然数除了1外,不是质数就是合数.如果把自然数按其约数的个数的不同分类,可分为质数、合数和1.

每个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数.

把一个合数用质因数相乘的形式表示出来,叫做分解质因数.

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18.其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数.

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质.

相邻的两个自然数互质.

两个不同的质数互质.

当合数不是质数的倍数时,这个合数和这个质数互质.

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质.

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数.

如果两个数是互质数,它们的最大公约数就是1.

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数..

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数.

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的.

(二)小数

1 小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示.

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

一个小数由整数部分、小数部分和小数点部分组成.数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分.

在小数里,每相邻两个计数单位之间的进率都是10.小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10.

2小数的分类

纯小数:整数部分是零的小数,叫做纯小数.例如: 0.25 、 0.368 都是纯小数.

带小数:整数部分不是零的小数,叫做带小数. 例如: 3.25 、 5.26 都是带小数.

有限小数:小数部分的数位是有限的小数,叫做有限小数. 例如: 41.7 、 25.3 、 0.23 都是有限小数.

无限小数:小数部分的数位是无限的小数,叫做无限小数. 例如: 4.33 …… 3.1415926 ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数. 例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数. 例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节. 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” .

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数. 例如: 3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数. 3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点.如果循环 节只有 一个数字,就只在它的上面点一个点.例如: 3.777 …… 简写作 0.5302302 …… 简写作 .

(三)分数

1 分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数.

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份.

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位.

2 分数的分类

真分数:分子比分母小的分数叫做真分数.真分数小于1.

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于或等于1.

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.

3 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分.

分子分母是互质数的分数,叫做最简分数.

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.

(四)百分数

1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比.百分数通常用"%"来表示.百分号是表示百分数的符号.

运算定律

1. 加法交换律:

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a .

2. 加法结合律:

三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) .

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a.

4. 乘法结合律:

三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) .

5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c .

6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) .

小升初考试必备数学一到六年级的知识点

小升初数学考的知识点是一到六年级的知识点,整理出不同年级的小学数学重要知识点,对于备考很有用,我在这里整理了相关资料,希望能帮助到那您。

一年级的知识重点

1数与计算

(1)20以内数的认识,加法和减法。

数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

(2)100以内数的认识。

加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。

两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

2量与计量

钟面的认识(整时)。人民币的认识和简单计算。

3几何初步知识

长方体、正方体、圆柱和球的直观认识。

长方形、正方形、三角形和圆的直观认识。

4应用题

比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

5实践活动

选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

 

二年级的知识重点

1数与计算

(1)两位数加、减两位数。两位数加、减两位数。加、减法竖式。两步计算的加减式题。

(2)表内乘法和表内除法。乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。

(3)万以内数的读法和写法。数数。百位、千位、万位。数的读法、写法和大小比较。

(4)加法和减法。加法,减法。连加法。加法验算,用加法验算减法。

(5)混合运算。先乘除后加减。两步计算式题。小括号。

2量与计量

时、分、秒的认识。

米、分米、厘米的认识和简单计算。

千克(公斤)的认识。

3几何初步知识

直线和线段的初步认识。角的初步认识。直角。

4应用题

加法和减法一步计算的应用题。乘法和除法一步计算的应用题。比较容易的两步计算的应用题。

5实践活动

与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。

 

三年级的知识重点

1数与计算

(1)一位数的乘、除法。

一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。

(2)两位数的乘、除法。

一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。

(3)四则混合运算。

两步计算的式题。小括号的使用。

(4)分数的初步认识。

分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。

2量与计量

千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。

3几何初步知识

长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。周长的含义。长方形、正方形的周长。

4应用题常见的数量关系。

解答两步计算的应用题。

5实践活动

联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。

   

四年级的知识重点

1数与计算

(1)亿以内数的读法和写法。

计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。读法和写法。数的大小比较。以万作单位的近似数。

(2)加法和减法。

加法,减法。

接近整十、整百数的加、减法的简便算法。

加、减法算式中各部分之间的关系。求未知数x。

(3)乘、除数是三位数的乘、除法。

乘数是三位数的乘法。积的变化。除数是三位数的除法。商不变的性质。被除数和除数末尾有0的简便算法。

乘、除计算的简单估算。

乘数接近整十、整百的简便算法。

乘、除法算式中各部分之间的关系。求未知数x。

(4)四则混合运算。

中括号。三步计算的式题。

(5)整数及其四则运算的关系和运算定律。

自然数与整数。十进制计数法。读法和写法。

四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。

运算定律。简便运算。

(6)小数的意义、性质,加法和减法。

小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值加法和减法。加法运算定律推广到小数。

2量与计量

年、月、日。平年、闰年。世纪。24时计时法。

角的度量。

面积单位。

3几何初步知识

直线的测定。测量距离(工具测、步测、目测)。

射线。直角、锐角、钝角、平角、*周角。垂线。画垂线。平行线。画平行线。

三角形的特征。

三角形的内角和。

4统计初步知识

简单数据整理。简单统计图表的初步认识。平均数的意义。求简单的平均数。

5应用题列综合算式

解答比较容易的三步计算的应用题。

 

五年级的知识重点

1计算

小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。

在前面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。

2方程

用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。

3空间与物体

在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置。

4图形的转换

探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。

5统计与概率

教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性。

6平均数

理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。

7实际应用

通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。

 

六年级的知识重点

1数与计算

(1)分数的乘法和除法,分数乘法的意义,分数乘法,乘法的运算定律推广到分数,倒数,分数除法的意义,分数除法。

(2)分数四则混合运算,分数四则混合运算。

(3)百分数,百分数的意义和写法,百分数和分数、小数的互化。

2比和比例

比的意义和性质,比例的意义和基本性质,解比例,成正比例的量和成反比例的量。

3几何初步知识

圆的认识,圆周率,画圆,圆的周长和面积,扇形的认识,轴对称图形的初步认识,圆柱的认识,圆柱的表面积和体积,圆锥的认识,圆锥的体积,球和球的半径、直径的初步认识。

4统计初步知识

统计表,条形统计图,折线统计图,扇形统计图。

5应用题

分数四则应用题(包括工程问题),百分数的实际应用(包括发芽率、合格率、利率、税率等的计算),比例尺,按比例分配。

6实践活动

联系学生所接触到的社会情况组织活动,例如就家中的卧室,画一个平面图。

小升初一至六年级数学知识点整理

水滴石穿,绳锯木断。备考小升初考试 ,也需要一点点积累才能到达好的效果,下面是我为大家带来的有关小升初一至 六年级数学 知识点整理,希望大家喜欢。

▼▼目录▼▼

1-6年级数学知识体系

必背定义、定理公式

小升初算术知识点

数量关系计算公式方面

一般运算规则

●  小升初数学知识点: 1-6年级知识体系

小学一年级九九乘法口诀表。学会基础加减乘。

小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。

小学四年级线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级比例百分比概率,圆扇圆柱及圆锥。

●   小升初数学知识点: 必背定义、定理公式

三角形的面积=底×高÷2。公式S=a×h÷2

正方形的面积=边长×边长公式S=a×a

长方形的面积=长×宽公式S=a×b

平行四边形的面积=底×高公式S=a×h

梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh

长方体(或正方体)的体积=底面积×高公式:V=abh

正方体的体积=棱长×棱长×棱长公式:V=aaa

圆的周长=直径×π公式:L=πd=2πr

圆的面积=半径×半径×π公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

●   小升初数学知识点: 算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

●   小升初数学知识点: 数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和

一个加数=和+另一个加数

被减数-减数=差

减数=被减数-差

被减数=减数+差

因数×因数=积

一个因数=积÷另一个因数

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

有余数的除法:被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、1公里=1千米1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克

1千克=1000克=

1公斤=1市斤

1公顷=10000平方米。

1亩=666.666平方米。

1升=1立方分米=1000毫升1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的公约数。(或几个数公有的约数,叫做这几个数的公约数。其中的一个,叫做公约数。)

17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3.141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3.141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3.141592654……

34、什么叫代数?代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x=ab+c

●   小升初数学知识点: 一般运算规则

1每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

21倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6加数+加数=和

和-一个加数=另一个加数

7被减数-减数=差

被减数-差=减数差+减数=被减数

8因数×因数=积

积÷一个因数=另一个因数

9被除数÷除数=商

被除数÷商=除数商×除数=被除数

四、小学数学图形计算公式

1正方形

C周长S面积a边长

周长=边长×4C=4a

面积=边长×边长S=a×a

2正方体

V:体积a:棱长

表面积=棱长×棱长×6S表=a×a×6

体积=棱长×棱长×棱长V=a×a×a

3长方形

C周长S面积a边长

周长=(长+宽)×2C=2(a+b)

面积=长×宽S=ab

4长方体

V:体积s:面积a:长b:宽h:高

表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

体积=长×宽×高V=abh

5三角形

s面积a底h高

面积=底×高÷2s=ah÷2

三角形高=面积×2÷底三角形底=面积×2÷高

6平行四边形

s面积a底h高

面积=底×高s=ah

7梯形

s面积a上底b下底h高

面积=(上底+下底)×高÷2s=(a+b)×h÷2

8圆形

S面积C周长∏d=直径r=半径

周长=直径×∏=2×∏×半径C=∏d=2∏r

面积=半径×半径×∏

9圆柱体

v:体积h:高s;底面积r:底面半径c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10圆锥体

v:体积h:高s;底面积r:底面半径

体积=底面积×高÷3

小升初一至六年级数学知识点整理相关 文章 :

★ 小升初一至六年级数学知识点整理

★ 小升初考试必备数学一到六年级的知识点

★ 六年级数学知识点梳理

★ 小升初数学考试知识点整理

★ 小升初数学知识考点归纳

★ 小升初数学知识点总结

★ 六年级数学知识点整理

★ 小升初数学考试必备知识点与易错点

★ 小升初数学知识点讲解:数量关系计算公式+数学知识点整理

★ 攻克小升初数学必考的知识点

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

  • 评论列表:
  •  冢渊蒗幽
     发布于 2022-09-23 01:46:39  回复该评论
  • 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数. 2 自然数: 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数. 一个物体也没有,用0表示.0也是
  •  俗野轻禾
     发布于 2022-09-22 21:51:56  回复该评论
  • 面的周长乘高再加上两头的圆的面积,公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高,公式:V=Sh 圆锥的体积=1/3底面×积高,公式:V=1/3Sh 度量 1公里=1千米,1千米=1

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.