黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

几何的知识点总结(几何的知识点总结思维导图)

本文目录一览:

高中数学几何知识点总结

几何是高中的一个重要学习知识点。知识点你都掌握了吗?接下来我为你整理了高中数学几何知识点总结,一起来看看吧。

高中数学几何知识点总结:平面

1. 经过不在同一条直线上的三点确定一个面.

注:两两相交且不过同一点的四条直线必在同一平面内.

2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)

3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)

[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.

4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向)

高中数学几何知识点总结:空间的直线与平面

⒈平面的基本性质  ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法.

⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.

⑴公理四(平行线的传递性).等角定理.

⑵异面直线的判定:判定定理、反证法.

⑶异面直线所成的角:定义(求法)、范围.

⒊直线和平面平行  直线和平面的位置关系、直线和平面平行的判定与性质.

⒋直线和平面垂直

⑴直线和平面垂直:定义、判定定理.

⑵三垂线定理及逆定理.

5.平面和平面平行

两个平面的位置关系、两个平面平行的判定与性质.

6.平面和平面垂直

互相垂直的平面及其判定定理、性质定理.

(二)直线与平面的平行和垂直的证明思路(见附图)

(三)夹角与距离

7.直线和平面所成的角与二面角

⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平

面所成的角、直线和平面所成的角.

⑵二面角:①定义、范围、二面角的平面角、直二面角.

②互相垂直的平面及其判定定理、性质定理.

8.距离

⑴点到平面的距离.

⑵直线到与它平行平面的距离.

⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.

⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.

(四)简单多面体与球

9.棱柱与棱锥

⑴多面体.

⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.

⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、

正方体;平行六面体的性质、长方体的性质.

⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.

⑸直棱柱和正棱锥的直观图的画法.

10.多面体欧拉定理的发现

⑴简单多面体的欧拉公式.

⑵正多面体.

11.球

⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离.

⑵球的体积公式和表面积公式.

高中数学几何知识点总结:常用结论、方法和公式

1.异面直线所成角的求法:

(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;

(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;

2.直线与平面所成的角

斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。通常通过斜线上某个特殊点作出平面的垂线段,垂足和斜足的连线,是产生线面角的关键;

3.二面角的求法

(1)定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

(2)三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;

(3)垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;

(4)射影法:利用面积射影公式S射=S原cos,其中为平面角的大小,此法不必在图形中画出平面角;

特别:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

4.空间距离的求法

(1)两异面直线间的距离,高考要求是给出公垂线,所以一般先利用垂直作出公垂线,然后再进行计算;

(2)求点到直线的距离,一般用三垂线定理作出垂线再求解;

初一数学几何基础知识点总结归纳

一、目标与要求

1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。

2.经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。

3.积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性。

二、知识框架

三、重点

从现实物体中抽象出几何图形,把立体图形转化为平面图形是重点;

正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系是重点;

画一条线段等于已知线段,比较两条线段的长短是一个重点,在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点。

四、难点

立体图形与平面图形之间的转化是难点;

探索点、线、面、体运动变化后形成的图形是难点;

画一条线段等于已知线段的尺规作图方法,正确比较两条线段长短是难点。

五、知识点、概念总结

1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形。有些几何图形的各部分都在同一平面内,叫做平面图形。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6.两点间的距离:连接两点间线段的长度叫做这两点间的距离。

7.端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。其中AB表示直线上的任意两点。

8.直线、射线、线段区别:直线没有距离。射线也没有距离。因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

10.角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

11.角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

12.角的符号:角的`符号:

13.角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角:大于0,小于90的角叫做锐角。

直角:等于90的角叫做直角。

钝角:大于90而小于180的角叫做钝角。

平角:等于180的角叫做平角。

优角:大于180小于360叫优角。

劣角:大于0小于180叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360的角叫做周角。

负角:按照顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90则两角互为余角,两角之和为180则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

14.几何图形分类

(1)立体几何图形可以分为以下几类:

第一类:柱体;

包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;

棱柱体积统一等于底面面积乘以高,即V=SH,

第二类:锥体;

包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;

棱锥体积统一为V=SH/3,

第三类:球体;

此分类只包含球一种几何体,

体积公式V=4R3/3,

其他不常用分类:圆台、棱台、球冠等很少接触到。

大多几何体都由这些几何体组成。

(2)平面几何图形如何分类

a.圆形

b.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,体形,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……

注:正方形既是矩形也是菱形

初二数学几何知识点归纳有哪些

数学的几何题是同学们的一大死穴,想要学好初二数学几何需要找到正确的学习方法。为了帮助大家更好的学习初二数学几何,下面是我分享给大家的初二数学几何知识点,希望大家喜欢!

初二数学几何知识点一

四边形(含多边形)知识点、概念总结

一、平行四边形的定义、性质及判定

1. 两组对边平行的四边形是平行四边形。

2. 性质:

(1)平行四边形的对边相等且平行

(2)平行四边形的对角相等,邻角互补

(3)平行四边形的对角线互相平分

3. 判定:

(1)两组对边分别平行的四边形是平行四边形

(2)两组对边分别相等的四边形是平行四边形

(3)一组对边平行且相等的四边形是平行四边形

(4)两组对角分别相等的四边形是平行四边形

(5)对角线互相平分的四边形是平行四边形

4. 对称性:平行四边形是中心对称图形

二、矩形的定义、性质及判定

1. 定义:有一个角是直角的平行四边形叫做矩形

2. 性质:矩形的四个角都是直角,矩形的对角线相等

3. 判定:

(1)有一个角是直角的平行四边形叫做矩形

(2)有三个角是直角的四边形是矩形

(3)两条对角线相等的平行四边形是矩形

4. 对称性:矩形是轴对称图形也是中心对称图形。

三、菱形的定义、性质及判定

1. 定义:有一组邻边相等的平行四边形叫做菱形

(1)菱形的四条边都相等

(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

(3)菱形被两条对角线分成四个全等的直角三角形

(4)菱形的面积等于两条对角线长的积的一半

2. s菱=争6(n、6分别为对角线长)

3. 判定:

(1)有一组邻边相等的平行四边形叫做菱形

(2)四条边都相等的四边形是菱形

(3)对角线互相垂直的平行四边形是菱形

4. 对称性:菱形是轴对称图形也是中心对称图形

四、正方形定义、性质及判定

1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

2. 性质:

(1)正方形四个角都是直角,四条边都相等

(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

(4)正方形的对角线与边的夹角是45°

(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

3. 判定:

(1)先判定一个四边形是矩形,再判定出有一组邻边相等

(2)先判定一个四边形是菱形,再判定出有一个角是直角

4. 对称性:正方形是轴对称图形也是中心对称图形

五、梯形的定义、等腰梯形的性质及判定

1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯

形.一腰垂直于底的梯形是直角梯形

2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

4. 对称性:等腰梯形是轴对称图形

六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

九、多边形

1. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2. 多边形的内角:多边形相邻两边组成的角叫做它的内角。

3. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

4. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

5. 多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

6. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

7. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

8. 公式与性质

多边形内角和公式:n边形的内角和等于(n-2)·180°

9. 多边形外角和定理:

(1)n边形外角和等于n·180°-(n-2)·180°=360°

(2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

10. 多边形对角线的条数:

(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

(2)n边形共有n(n-3)/2条对角线

初二数学几何知识点二

圆知识点、概念总结

1. 不在同一直线上的三点确定一个圆。

2. 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1 ① (不是直径)的直径垂直于弦,并且平分弦所对的两条弧

② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3. 圆是以圆心为对称中心的中心对称图形

4. 圆是定点的距离等于定长的点的集合

5. 圆的内部可以看作是圆心的距离小于半径的点的集合

6. 圆的外部可以看作是圆心的距离大于半径的点的集合

7. 同圆或等圆的半径相等

8. 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9. 定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10. 推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11. 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12. ① 直线L和⊙O相交 d

② 直线L和⊙O相切 d=r

③ 直线L和⊙O相离 dr

13. 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

14. 切线的性质定理:圆的切线垂直于经过切点的半径

15. 推论1 经过圆心且垂直于切线的直线必经过切点

16. 推论2 经过切点且垂直于切线的直线必经过圆心

17. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18. 圆的外切四边形的两组对边的和相等 ,外角等于内对角

19. 如果两个圆相切,那么切点一定在连心线上

20. ① 两圆外离 dR+r

② 两圆外切 d=R+r

③ 两圆相交 R-rr)

④ 两圆内切 d=R-r(Rr) ⑤两圆内含dr)

21. 定理:相交两圆的连心线垂直平分两圆的公共弦

22. 定理:把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23. 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24. 正n边形的每个内角都等于(n-2)×180°/n

25. 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26. 正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27. 正三角形面积√3a/4 a表示边长

28. 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29. 弧长计算公式:L=n兀R/180

30. 扇形面积公式:S扇形=n兀R^2/360=LR/2

31. 内公切线长= d-(R-r) 外公切线长= d-(R+r)

32. 定理:一条弧所对的圆周角等于它所对的圆心角的一半

33. 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35. 弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r

初二数学几何知识点三

三角形知识点、概念总结

1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形的分类

3. 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

5. 中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

6. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

7. 高线、中线、角平分线的意义和做法

8. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

9. 三角形内角和定理:三角形三个内角的和等于180°

推论1 直角三角形的两个锐角互余

推论2 三角形的一个外角等于和它不相邻的两个内角和

推论3 三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

10. 三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

11. 三角形外角的性质

(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

(2)三角形的一个外角等于与它不相邻的两个内角和;

(3)三角形的一个外角大于与它不相邻的任一内角;

(4)三角形的外角和是360°。

猜你喜欢:

1. 初三上数学知识点归纳

2. 初中数学知识点归纳

3. 高考必备数学公式知识点

4. 初中数学圆的知识点归纳

5. 3年级数学归纳知识点有哪些

  • 评论列表:
  •  嘻友岛徒
     发布于 2022-09-24 02:27:05  回复该评论
  • (1)有一组邻边相等的平行四边形叫做菱形 (2)四条边都相等的四边形是菱形 (3)对角线互相垂直的平行四边形是菱形 4. 对称性:菱形是轴对称图形也是中心对称图形 四、正方形定义
  •  辙弃路岷
     发布于 2022-09-24 00:21:12  回复该评论
  • 直线的距离:异面直线的公垂线及其性质、公垂线段. (四)简单多面体与球 9.棱柱与棱锥 ⑴多面体. ⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质. ⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、 正方体;平行六
  •  性许寻妄
     发布于 2022-09-23 22:59:04  回复该评论
  • :空间的直线与平面 ⒈平面的基本性质  ⑴三个公理及公理三的三个推论和它们的用途. ⑵斜二测画法. ⒉空间两条直线的位置关系:相交直线、平行直线、异面直线. ⑴公理四(平
  •  假欢绣羽
     发布于 2022-09-24 04:06:45  回复该评论
  • 互补 (3)平行四边形的对角线互相平分 3. 判定: (1)两组对边分别平行的四边形是平行四边形 (2)两组对边分别相等的四边形是平行四边形 (3)一组对边平行且相等的四边形是平行四边形 (4

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.