本文目录一览:
- 1、超声波探伤标准
- 2、超声波探伤的原理是什么?
- 3、超声波探伤仪的基本原理是什么?
- 4、超声波的知识
- 5、无损检测 超声探伤,B、C、D型扫描,相控阵线性扫描和扇形扫描等等,谁能帮帮给个图示解释下!
- 6、什么情况下使用超声波探伤?它与射线探伤有何区别?
超声波探伤标准
标准规定:对于图纸要求焊缝焊接质量等级为一级时评定等级为Ⅱ级时规范规定要求做100%超声波探伤;
对于图纸要求焊缝焊接质量等级为二级时评定等级为Ⅲ级时规范规定要求做20%超声波探伤;
对于图纸要求焊缝焊接质量等级为三级时不做超声波内部缺陷检查。
探伤过程中,首先要了解图纸对焊接质量的技术要求。钢结构的验收标准是依据GB50205- 2001《钢结构工程施工质量验收规范》来执行的。
扩展资料
在每次探伤操作前都必须利用标准试块(CSK- IA、CSK- ⅢA)校准仪器的综合性能,校准面板曲线,以保证探伤结果的准确性。
(1)探测面的修整:应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等,光洁度一般低于▽4。焊缝两侧探伤面的修整宽度一般为大于等于2KT+50mm, (K:探头K值,T:工件厚度);
一般的根据焊件母材选择K值为2.5 探头。例如:待测工件母材厚度为10mm,那么就应在焊缝两侧各修磨100mm。
(2)耦合剂的选择应考虑到粘度、流动性、附着力、对工件表面无腐蚀、易清洗,而且经济,综合以上因素选择浆糊作为耦合剂。
(3)由于母材厚度较薄因此探测方向采用单面双侧进行
(4)由于板厚小于20mm所以采用水平定位法来调节仪器的扫描速度。
(5)在探伤操作过程中采用粗探伤和精探伤。为了大概了解缺陷的有无和分布状态、定量、定位就是精探伤。使用锯齿形扫查、左右扫查、前后扫查、转角扫查、环绕扫查等几种扫查方式以便于发现各种不同的缺陷并且判断缺陷性质。
参考资料:百度百科-超声波探伤
超声波探伤的原理是什么?
超声波探伤的原理:
超声波探伤仪会发出高频脉冲电信号加在探头的压电晶片上,而逆压电效应会导致晶片产生弹性形变,从而产生超声波;超声波经耦合后被传入被探工件(绝缘子)中,遇到异质界面产生反射,反射回来的超声波同样会作用于探头,由于正压电的效应从而产生电信号用于分析,就可以知道其中的缺陷。也就是所谓的“探伤”。
标准试块的作用:
可以测试和校验探伤仪性能。
调整扫描速度,确定缺陷位置。
调整灵敏度
测量材质衰减
确定耦合补偿
绝缘子探伤本身就是一项及其繁琐的工作,很容易让试验者觉得有些麻烦,操作不容易掌握,然而在整个输电线路中,绝缘子是其中很重要的一环,它的性能好坏也关系到整个电网的正常运行。因此,很有必要定时定期的检测绝缘子,避免重大的输电事故的产生。只要多加练习,很容易掌握DAC曲线等操作。
超声波探伤仪的基本原理是什么?
通过超声波在材料中传播遇到介质会发生反射与折射原来来设计的。如果材料中没有缺陷的话,超声波传播的材料另一端会发生反射,被探头捕捉后,根据波在材料中的声速与实际检测时发射波与接收回波之间所耗的时间来判断出材料的厚度。如果有缺陷同样也会有反射回波,探头会捕捉到。那么缺陷回波会比材料另一面(底面)回波走的行程短,以次在设备上体现出来就能判断是否有缺陷形成了。
超声波的知识
次声波是指频率小于20Hz(赫兹),但是高于气候造成的气压变动的声波。人耳对次声波基本上没有感受,但是一些动物如象、长颈鹿和蓝鲸可以感受次声波频率并使用这个频率来通讯。尤其频率极低的次声波可以传播到非常远。在水下次声波的传播距离也非常远。次声波不容易衰减,不易被水和空气吸收。次声波的波长往往很长,因此能绕开某些大型障碍物发生衍射。某些次声波能绕地球2至3周。生理和心理作用虽然人几乎无法听到次声波,但是通过其波压人可以感受到次声波。但是听阙非常高,而且随频率不同[1]。此外身体可以感受到低频的、剧烈的震动。虽然始终有关于次声波伤害人体的传说,但是至今为止在实验中未能证明声压在170分贝以下的次声波对听觉、平衡器官、肺脏或者其它内脏有任何破坏[2]。在185至190分贝左右人的耳膜会破裂,这个声压相当于半个标准大气压。频率非常低、暴露时间非常长、而振动加速度非常高(波幅的加速度超过地球引力加速度)的次声波在一定情况下会导致内脏出血。在这样高幅度的次声波下,以至于人可以感受到次声波(与一般的声波一样)也会出现心理作用,尤其是精神不集中。就风力发电机、嗡嗡声和风琴声等的作用有过非常激烈的讨论,但是至今为止未能证明无法感受到的次声波对人有任何影响。[编辑] 声源[编辑] 自然声源低频波如地震、火山爆发、陨星坠落、极端的气候现象或者巨浪可以在空气中导致次声波。这样的次声波可以传播数千千米。阵风和旋风也会产生次声波。[编辑] 焚风阿尔卑斯山脉的焚风是一个非常强的次声波声源,其频率在0.01至0.1赫兹间。这个次声波对人是否有影响至今还在争议中。[编辑] 人工声源工业设施也会产生次声波。尤其是假如在封闭的房间里次声波形成驻波,由此导致建筑结构共振,会造成危害。地面或地下爆炸、火箭发射的声音中包含次声波的成分。这些次声波可以传播非常远,它们可以被用来确定爆炸或者火箭发射的地点或者方向。超声速飞机在突破音障时的音爆中包含次声波的成分。尤其是建筑密集的大城市也会产生次声波,这样的次声波不但会传播非常远,而且局部会产生非常强烈的驻波。比如美国首都华盛顿在部分市区里有许多高建筑物,这些建筑物主要使用坚硬的石制表面,而且几乎所有的建筑均拥有非常强大的冷风装置。在夏季市内会产生波及非常广的次声波场,建筑之间的气流会互相影响产生低频共振。尤其在非常安静的夜晚大城市的低频声波在非常远的地方依然可以听得到,其次声波的成分的传播距离更加远。有人认为多年生活在这样的次声波场内会导致健康问题。关于风力发电机产生的次声波是否有健康影响始终有争议,但是至今为止没有任何可以证明这个影响的数据。不过风力发电机也会产生可以听得见的、有生理作用的低频声波。[编辑] 测量要寻找次声波的声源有时很困难。波幅高的次声波往往会导致非线性效应,由此产生谐波,这样的谐波往往可以被听到,这简化寻找声源的过程。人们使用气压探测器来探测和测量次声波,与气压表不同的是这样的探测器的反应速度高,能够测量非常小的压力变化。与麦克风的区别在于它们能够探测频率低达0.01至0.1赫兹的声波。对大气和海洋中的次声波的研究是一门比较新的学科。其应用范围包括确定核爆炸试验和船只的运动。[编辑] 次声波监测网全面禁止核试验条约签署后在全球建立了一个国际性的次声波监测网,这个监测网的目的在于任何在大气层内、水下或太空中进行的核爆炸不会被忽视。这个监测网的数据也可以被用来探测和定向非核爆炸以及其它次声波声源
无损检测 超声探伤,B、C、D型扫描,相控阵线性扫描和扇形扫描等等,谁能帮帮给个图示解释下!
扇形扫查通过探头的波束偏转来控制。晶片激发的时间不同,从而产生不同角度的波束偏转
线性扫查是不同的时间激发不同组的晶片,从而形成电子扫查。
什么情况下使用超声波探伤?它与射线探伤有何区别?
1楼回答的很准确,我在完善下:
超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探
伤适合于厚度较大的零件检验。
射线对体积型缺陷敏感,但对线状缺陷,特别是厚板中细小的未焊透(熔入不足)或微裂纹等难于发现,而超音波对线状缺陷敏感,却对点状缺陷的定量不容易定准。
综上所述,射线的检测优势在于体积型缺陷的检测,超声波优势在于面缺陷的检测。需要强调的是各种无损检测方法各有优缺点,要根据具体的情况具体分析,采用最有利于检测可能缺陷的检测方法。