本文目录一览:
- 1、初中数学竞赛有哪些重要知识点
- 2、初中数学竞赛,要用到的定理或公式?
- 3、求初中数学竞赛中杂题,数论方面的资料
- 4、初中数学竞赛要知道哪些定理?请列举(详细说明)谢谢!
- 5、初中数学竞赛知识点归纳总结
初中数学竞赛有哪些重要知识点
初中数学竞赛很多时候考察的是对所学内容的掌握情况,我整理了一些数学竞赛的知识点。
平行四边形
1、两组对边平行的四边形是平行四边形.
2、性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分。
3、判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形。
平方根
1、如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,2是根指数。
2、a的算术平方根读作“根号a”,a叫做被开方数。
3、0的算术平方根是0。
4、如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
5、求一个数a的平方根的运算,叫做开平方。
立方根
1、如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。
2、求一个数的立方根的运算,叫做开立方。
不等式
1、用小于号或大于号表示大小关系的式子,叫做不等式。
2、使不等式成立的未知数的值叫做不等式的解。
3、能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集。
4、有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
不等式的性质
1、不等式两边加(或减)同一个数(或式子),不等号的方向不变。
2、不等式两边乘(或除以)同一个正数,不等号的方向不变。
3、不等式两边乘(或除以)同一个负数,不等号的方向改变。
4、三角形中任意两边之差小于第三边。
5、三角形中任意两边之和大于第三边。
一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组。
以上是我整理的初中数学竞赛的知识点,希望能帮到你。
初中数学竞赛,要用到的定理或公式?
1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
求初中数学竞赛中杂题,数论方面的资料
初中数学合集百度网盘下载
链接:
?pwd=1234 提取码:1234
简介:初中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
初中数学竞赛要知道哪些定理?请列举(详细说明)谢谢!
平面几何来讲,需要梅涅劳斯定理和塞瓦定理
梅涅劳斯定理
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF/FB×BD/DC×CE/EA=1。
塞瓦定理
设O是△ABC内任意一点,
AO、BO、CO分别交对边于D、E、F,则
BD/DC*CE/EA*AF/FB=1
先说这两个,有兴趣在问我,我是高三学生,同样数学竞赛。
初中数学竞赛知识点归纳总结
初中数学竞赛是考察学生在掌握课本上知识的基础上,能够灵活的运用知识点的能力,我整理了一些初中数学竞赛的知识点。
倍数、约数
1、两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。
例如3|15,15是3的倍数,3是15的约数。
2、因为0除以非0的任何数都得0,所以0被非0整数整除。0是任何非0整数的倍数,非0整数都是0的约数。如0是7的倍数,7是0的约数。
3、整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,„„都是A的倍数,例如5的倍数有±5,±10
4、整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。例如6的约数是±1,±2,±3,±6。
5、通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。
6、公约数只有1的两个正整数叫做互质数。
7、在有余数的除法中,被除数=除数×商数+余数。
质数、合数
1、正整数的一种分类:
质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
2、根椐质数定义可知
(1)质数只有1和本身两个正约数
(2)质数中只有一个偶数
3、任何合数都可以分解为几个质数的积。能写成几个质数的积的正整数就是合数。
平行四边形
1、性质:
(1)平行四边形的对边相等且平行
(2)平行四边形的对角相等,邻角互补
(3)平行四边形的对角线互相平分
2、判定:
(1)两组对边分别平行的四边形是平行四边形
(2)两组对边分别相等的四边形是平行四边形
(3)一组对边平行且相等的四边形是平行四边形
(4)两组对角分别相等的四边形是平行四边形
(5)对角线互相平分的四边形是平行四边形
以上是我整理的数学竞赛的重要知识点,希望能帮到你。