黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

常用的算数知识(算数方法有哪些)

本文目录一览:

算术的基本介绍

算术(arithmetic) 数学的一个基础分支。它以自然数和非负分数为主要对象。算术的内容包括两部分,一部分讨论自然数的读法、写法和它的基本运算,这一部分包括进位制和记数法,主要是十进位制,其他的进位制与十进位制仅是采用的基数不同,都可以仿照十进位数的原理和原则进行计算,算术的另一部分包括算术运算的方法与原理的应用。如分数与百分数计算,各种量及其计算,比和比例,以及算术应用题。

自然数或正整数的数学理论就是众所周知的算术。至于几何、 代数等许多数学分支学科的名称,都是后来很晚的时候才有的。

国外系统地整理前人数学知识的书,要算是希腊的欧几里得的《几何原本》最早。《几何原本》全书共十五卷,后两卷是后人增补的。全书大部分是属于几何知识,在第七、八、九卷中专门讨论了数的性质和运算,属于算术的内容。

拉丁文的“算术”这个词是由希腊文的“数和数(音属)数的技术”变化而来的。“算”字在中国的古意也是“数”的意思,表示计算用的竹筹。中国古代的复杂数字计算都要用算筹。所以“算术”包含当时的全部数学知识与计算技能,流传下来的最古老的《九章算术》以及失传的许商《算术》和杜忠《算术》,就是讨论各种实际的数学问题的求解方法。 算术的基础在于:整数的加法和乘法服从某些规律。为了要叙述这些具有普遍性的规律,不能用像1,2,3这种表示特定数的符号。两个整数,不管它们的次序如何,它们的和相同。而

1+2=2+1

这一命题仅仅是这一般规律的一个特殊例子。因此当我们希望表示整数之间的某个关系——不论涉及的一些特定的整数值如何——是正确的,可以用字母a,b,c,…作为表示整数的符号。于是,我们所熟知的五个算术规律可叙述为:

前两个是加法和乘法的交换律,它说明人们可以交换加法或乘法中元素的次序。第三个是加法的结合律,它表明三个数相加时,或者我们把第一个加上第二个与第三个的和;或者我们把第三个加上第一个与第二个的和,其结果都相同。第四个是乘法的结合律。最后一个是分配律,它表明用一个整数去乘一个和时,我们可以用这整数去乘这和的每一项,然后把这些乘积加起来。 算术是数学的一个分支,其内容包括自然数和在各种运算下产生的性质,运算法则以及在实际中的应用。可是,在数学发展的历史中算术的含义要广泛得多。

在中国古代,算是一种竹制的计算器具,算术是指操作这种计算器具的技术,也泛指当时一切与计算有关的数学知识。算术一词正式出现于《九章算术》中。《九章算术》分为九章,即方田、粟米等,大都是实用的名称。如“方田”是指土地的形状,讲土地面积的计算,属于几何的范围;“粟米”是粮食的代称,讲的是各种粮食间的兑换,主要涉及的是比例,属于算术的范围。可见,当时的“算术”是泛指数学的全体,与现代的意义不同。

直到宋元时代,才出现了“数学”这一名词,在数学家的菱中,往往数学与算学并用。当然,此处的数学仅泛指中国古代的数学,它与古希腊数学体系不同,它侧重研究算法。

从19世纪起,西方的一些数学学科,包括代数、三角等相继传入中国。西方传教士多使用数学,日本后来也使用数学一词,中国古算术则仍沿用“算学”。1953年,中国数学会成立数学名词审查委员会,确立起“算术”的意义,而算学与数学仍并存使用。1937年,清华大学仍设“算学系”。1939年为了统一起见,才确定专用“数学”。 关于算数的产生,还是要从数谈起。数是用来表达、讨论数量问题的,有 不同类型的量,也就随着产生了各种不同类型的数。远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。

自然数的一个特点就是由不可分割的个体组成。比如说树和羊这两种事物,如果说两棵树,就是一棵再一颗;如果有三只羊,就是一只、一只又一只。但不能说有半棵树或者半只羊,半棵树或者半只羊充其量只能算是木材或者是羊肉,而不能算作树和羊。

数和数之间有不同的关系,为了计算这些数,就产生了加、减、乘、除的方法,这四种方法就是四则运算。

把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。

在算术的发展过程中,由于实践和理论上的要求,提出了许多新问题,在解决这些新问题的过程中,古算术从两个方面得到了进一步的发展。

一方面在研究自然数四则运算中,发现只有除法比较复杂,有的能除尽,有的除不尽,有的数可以分解,有的数不能分解,有些数又大于1的公约数,有些数没有大于1的公约数。为了寻求这些数的规律,从而发展成为专门研究数的性质、脱离了古算术而独立的一个数学分支,叫做整数论,或叫做初等数论,并在以后又有新的发展。

另一方面,在古算术中讨论各种类型的应用问题,以及对这些问题的各种解法。在长 期的研究中,很自然地就会启发人们寻求解这些应用问题的一般方法。也就是说,能不能找到一般的更为普遍适用的方法来解决同样类型的应用问题,于是发明了抽象的数学符号,从而发展成为数学的另一个古老的分支,指就是初等代数。

数学如此发展,算术已不再是数学的一个分支,我们通常提到的算术,只是作为小学里的一个教学科目,目的是使学生理解和掌握有关数量关系和空间形式的最基础的知识,能够正确、迅速地进行整数、小数、分数的四则运算,初步了解现代数学中的一些最简单的思想,具有初步的逻辑思维能力和空间观念。 现代小学数学的具体内容,基本上还是古代算术的知识,也就是说,古代算术和现代算术的许多内容上是相同的。不过现代算术和古代算术也还存在着区别。

首先,算术的内容是古代的成人包括数学家所研究的对象,这些内容已变成了少年儿童的数学。其次,在现代小学数学里,总结了长期以来所归结出来的基本运算性质,即加法、乘法的交换律和结合律,以及乘法对加法的分配律。这五条基本运算定律,不仅是小学数学里所学习的数运算的重要性质,也是整个数学里,特别是代数学里着重研究的主要性质。

第三,在现代的小学数学里,还孕育着近代数学里的集合和函数等数学基础概念的思想。比如,和、差、积、商的变化,数和数之间的对应关系,以及比和比例等。

另外,小学数学里,还包含有十六世纪才出现的十进小数和它们的四则运算。应当提出的是十进小数不是一种新的数,而可以被看作是一种分母是10的方幂的分数的另一种写法。

现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了一个分支了。因此,也可以说算术是最古老的分支。 《算术》(Arithmetica)是古希腊后期数学家丢番图的一部名著,著作原有13卷,长期以来,大家都以为只有1464年在威尼斯发现的前6卷希腊文抄本,后在马什哈德(伊朗东北部)又发现4卷阿拉伯文译本。

《算术》事实上是一部代数著作,其中包含有一元或多元一次方程的问题,二次不定方程问题以及数论方面的问题,现存6卷中共有189题,几乎一题一法,各不相同。虽然后人将其归成五十多个类,但是仍无一般的方法可寻。并且,著作中引用了许多缩写符号,如未知量及其各次幂用S、△r、Kr、△r△、△Kr、KrK等符号。无论从内容与形式上讲,这种完全脱离几何的特征,与当时古希腊欧几里得几何盛行的时尚大异其趣。因此,丢番图的《算术》虽然代表了古希腊代数学的最高水平,但是它远远超出了同时代人,而不为同时代人所接受,很快就被湮没,没有对当时数学的发展产生太大的影响。

直到15世纪《算术》被重新发掘,鼓舞了一大批数学家在此基础之上,把代数学大大向前推进了。首先是法国数学家蓬贝利认识到《算术》的重大价值,他的同胞韦达正是在丢番图缩写代数的启示下才做出了符号代数的贡献,到17世纪,费马手持一本《算术》,并在其空白处写写画画,竟把数论引上了近代的轨道。《算术》中的不定分析,对现代数学影响也很深远,在不同数域上,凡是涉及不定方程求解问题,都称之为“丢番图方程”或“丢番图分析”。

数的运算知识点总结

第一章 实数

★重点★ 实数的有关概念及性质,实数的运算

☆内容提要☆

一、 重要概念

1.数的分类及概念

数系表:

说明:“分类”的原则:1)相称(不重、不漏)

2)有标准

2.非负数:正实数与零的统称。(表为:x≥0)

常见的非负数有:

性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法

②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D.积为1。

4.相反数: ①定义及表示法

②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)

②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)

定义及表示:

奇数:2n-1

偶数:2n(n为自然数)

7.绝对值:①定义(两种):

代数定义:

几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算

1. 运算法则(加、减、乘、除、乘方、开方)

2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

分配律)

3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”

到“右”(如5÷ ×5);C.(有括号时)由“小”到“中”到“大”。

三、 应用举例(略)

附:典型例题

1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

=b-a.

2.已知:a-b=-2且ab0,(a≠0,b≠0),判断a、b的符号。

初三数学知识点 第二章 代数式

★重点★代数式的有关概念及性质,代数式的运算

☆内容提要☆

一、 重要概念

分类:

1.代数式与有理式

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式

含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式

没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

=x, =│x│等。

4.系数与指数

区别与联系:①从位置上看;②从表示的意义上看

5.同类项及其合并

条件:①字母相同;②相同字母的指数相同

合并依据:乘法分配律

6.根式

表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。

7.算术平方根

⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);

⑵算术平方根与绝对值

① 联系:都是非负数, =│a│

②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化

化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数

⑴ ( —幂,乘方运算)

① a0时, 0;②a0时, 0(n是偶数), 0(n是奇数)

⑵零指数: =1(a≠0)

负整指数: =1/ (a≠0,p是正整数)

二、 运算定律、性质、法则

1.分式的加、减、乘、除、乘方、开方法则

2.分式的性质

⑴基本性质: = (m≠0)

⑵符号法则:

⑶繁分式:①定义;②化简方法(两种)

3.整式运算法则(去括号、添括号法则)

4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤

技巧:

5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)

(a+b)(a-b)=

(a±b) =

7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b0)(正用、逆用)

10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

11.科学记数法: (1≤a10,n是整数=

三、 应用举例(略)

四、 数式综合运算(略)

九章算术有哪些数学知识?

九章算术数学知识有数学中算术,代数几何等大部分内容。它的特点是重视理论,但不脱离实际,它记载了当时世界上最先进的分数四则运算和比例运算,九章算术是中国古代第一部数学专著,是算经十书中最重要的一部成于公元一世纪左右。

九章算术数学知识特点

九章算术内容十分丰富,全书总结了战国秦汉时期的数学成就,同时九章算术在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,方程章还在世界数学史上首次阐述了负数及其加减运算法则。

它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系,该著作中包含246个数学应用问题,分别属于方田粟米衰分,少广商功均输盈不足方程及句股这九章。

  • 评论列表:
  •  可难抹忆
     发布于 2022-10-09 04:04:54  回复该评论
  • 在此基础之上,把代数学大大向前推进了。首先是法国数学家蓬贝利认识到《算术》的重大价值,他的同胞韦达正是在丢番图缩写代数的启示下才做出了符号代数的贡献,到17世纪,费马手持一本《算术》,并在其空白处写写画画,竟把数论引上了近代的轨道。《算术》中的不定分析,对现代数学影响也很深远,在不同数域上,凡
  •  怎忘述情
     发布于 2022-10-09 03:09:36  回复该评论
  • =│a│②区别:│a│中,a为一切实数; 中,a为非负数。8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:①被开方数的因数是整数,因式是整式;②
  •  假欢寂星
     发布于 2022-10-08 22:30:28  回复该评论
  • 算术》分为九章,即方田、粟米等,大都是实用的名称。如“方田”是指土地的形状,讲土地面积的计算,属于几何的范围;“粟米”是粮食的代称,讲的是各种粮食间的兑换,主要涉及的是比例,属于算术的范围。可见,当时的“算术”是泛指数学的全体,与现代的意义不同。直到宋元时代,才出
  •  痴者暗喜
     发布于 2022-10-08 23:05:11  回复该评论
  • 题一法,各不相同。虽然后人将其归成五十多个类,但是仍无一般的方法可寻。并且,著作中引用了许多缩写符号,如未知量及其各次幂用S、△r、Kr、△r△、△Kr、KrK等符号。无论从内容与形式上讲,这种完全脱离几
  •  只酷贪欢
     发布于 2022-10-08 22:14:41  回复该评论
  • 数学家丢番图的一部名著,著作原有13卷,长期以来,大家都以为只有1464年在威尼斯发现的前6卷希腊文抄本,后在马什哈德(伊朗东北部)又发现4卷阿拉伯文译本。《算术》事实上是一部代数著作,其中包含有一元或多元一次方程的问题,二次

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.