本文目录一览:
冀教版八年级数学知识点归纳
数学是考试的重点考察科目,数学知识的积累和解题 方法 的掌握,需要科学有效的 复习方法 ,同时需要持之以恒的坚持。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。
初二数学知识点
位置与坐标
1、确定位置
在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系
①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。
3、轴对称与坐标变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
八年级数学知识点归纳
一次函数
一.知识框架
二.知识概念
1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。
4.已知两点坐标求函数解析式:待定系数法
一次函数是初中学生学习函数的开始,也是今后学习 其它 函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
初二数学复习方法
1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是一次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。
2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。
3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。
4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。
冀教版八年级数学知识点归纳相关 文章 :
★ 初二数学冀教版知识点
★ 初中数学知识点归纳(冀教版)
★ 初一数学知识点归纳冀教版
★ 冀教版八年级数学上册目录
★ 八年级学习方法指导
★ 冀教版初二上册数学期末试卷(2)
★ 初二数学教学论文范文
★ 冀教版八年级下册数学课本答案
★ 数学知识点冀教版
★ 数学冀教版知识点
冀教版八年级上数学知识点总结
1 全等三角形的对应边、对应角相等
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
5 边边边公理(SSS) 有三边对应相等的两个三角形全等
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
7 定理1 在角的平分线上的点到这个角的两边的距离相等
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
9 角的平分线是到角的两边距离相等的所有点的集合
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
23 推论3 等边三角形的各角都相等,并且每一个角都等于60°
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
25 推论1 三个角都相等的三角形是等边三角形
26 推论 2 有一个角等于60°的等腰三角形是等边三角形
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
28 直角三角形斜边上的中线等于斜边上的一半
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
32 定理1 关于某条直线对称的两个图形是全等形
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
38定理 四边形的内角和等于360°
39四边形的外角和等于360°
40多边形内角和定理 n边形的内角的和等于(n-2)×180°
41推论 任意多边的外角和等于360°
42平行四边形性质定理1 平行四边形的对角相等
43平行四边形性质定理2 平行四边形的对边相等
44推论 夹在两条平行线间的平行线段相等
45平行四边形性质定理3 平行四边形的对角线互相平分
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
50矩形性质定理1 矩形的四个角都是直角
51矩形性质定理2 矩形的对角线相等
52矩形判定定理1 有三个角是直角的四边形是矩形
53矩形判定定理2 对角线相等的平行四边形是矩形
54菱形性质定理1 菱形的四条边都相等
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
56菱形面积=对角线乘积的一半,即S=(a×b)÷2
57菱形判定定理1 四边都相等的四边形是菱形
58菱形判定定理2 对角线互相垂直的平行四边形是菱形
59正方形性质定理1 正方形的四个角都是直角,四条边都相等
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
61定理1 关于中心对称的两个图形是全等的
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等
65等腰梯形的两条对角线相等
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
67对角线相等的梯形是等腰梯形
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
84 判定定理3 三边对应成比例,两三角形相似(SSS)
85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
87 性质定理2 相似三角形周长的比等于相似比
88 性质定理3 相似三角形面积的比等于相似比的平方
89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
91圆是定点的距离等于定长的点的集合
92圆的内部可以看作是圆心的距离小于半径的点的集合
93圆的外部可以看作是圆心的距离大于半径的点的集合
94同圆或等圆的半径相等
95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
97到已知角的两边距离相等的点的轨迹,是这个角的平分线
98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
99定理 不在同一直线上的三点确定一个圆。
100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
102推论2 圆的两条平行弦所夹的弧相等
103圆是以圆心为对称中心的中心对称图形
104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
106定理 一条弧所对的圆周角等于它所对的圆心角的一半
107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
111①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
113切线的性质定理 圆的切线垂直于经过切点的半径
114推论1 经过圆心且垂直于切线的直线必经过切点
115推论2 经过切点且垂直于切线的直线必经过圆心
116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
117圆的外切四边形的两组对边的和相等
118弦切角定理 弦切角等于它所夹的弧对的圆周角
119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
124如果两个圆相切,那么切点一定在连心线上
125①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
126定理 相交两圆的连心线垂直平分两圆的公共弦
127定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
129正n边形的每个内角都等于(n-2)×180°/n
130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
131正n边形的面积Sn=pnrn/2 p表示正n边形的周长
132正三角形面积√3a/4 a表示边长
133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
134弧长计算公式:L=n兀R/180
135扇形面积公式:S扇形=n兀R^2/360=LR/2
136内公切线长= d-(R-r) 外公切线长= d-(R+r)
冀教版初二数学知识点归纳
数学是考试的重点考察科目,数学知识的积累和解题 方法 的掌握,需要科学有效的 复习方法 ,同时需要持之以恒的坚持。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
八年级 数学知识点
数据的分析
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
初二数学知识点
一、多边形
1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
9、多边形内角和定理:n边形内角和等于(n-2)180°。
10、多边形内角和定理的推论:n边形的外角和等于360°。
说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。
二、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。
三、凸四边形
把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。
四、对角线
在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。
五、四边形的不稳定性
三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。
六、4边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于180°;
多边形的外角和定理:任意多边形的外角和等于360°。
八年级数学课文知识点
1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。例1、1、在同一平面内两条直线的位置关系为(相交)和(平行)。2、两条直线相交成直角时,就说这两条直线互相垂直,其…
平行四边形矩形菱形正方形梯形等腰梯形图形两组对边分别平行的四边形。定义用“”表示平行四边形,例如:ABCD,平行四边形ABCD记作有一个角是直角的平有一组邻边相等的平行四边形是菱形有一组邻边相等且…
第十八章平行四边形的认识知识点回顾:平行四边形、特殊平行四边形的特征以及彼此之间的关系1.矩形是特殊的平行四边形,矩形的四个内角都是_____。矩形的对角线___2.菱形是特殊的平行四边形,菱形是四条边都__,它的两条对角线__每条对角线平…
特殊的平行四边形和一元二次方程的知识点归纳
【菱形】
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2.菱形的性质:
(1)菱形的性质有:①平行四边形的一切性质;②四条边都相等;③对角线互相垂直,并且每一条对角线平分一组对角;④菱形是对称轴图形,它有2条对称轴,分别为它的两条对角线所在的直线。
(2)菱形面积=底×高=对角线乘积的一半。
3.菱形的判定:
(1)用定义判定(即一组邻边相等的平行四边形是菱形)。
(2)对角线互相垂直的平行四边形是菱形。
(3)四条边都相等的四边形是菱形。
综上可知,判定菱形时常用的思路:
四条边都相等菱形
菱形四边形
平行
四边形有一组邻边相等菱形
【矩形】
1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2.矩形的性质:(1)具有平行四边形的一切性质;(2)矩形的四个角都是直角;
(3)矩形的四个角都相等。
4.矩形的判定方法:
(1)用定义判定(即有一个角是直角的平行四边形是矩形);
(2)三个角都是直角的四边形是矩形;
(3)对角线相等的平行四边形是矩形。
综上可知,判定矩形时常用的思路:
【正方形】
1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
2.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(1)边:四条边相等,邻边垂直且相等,对边平行且相等。
1(2)角:四个角都是直角。
(3)对角线:对角线相等且互相垂直平分,每条对角线平分一组对角。
3.正方形的判定
(1)根据定义判定;(2)对角线相等的菱形是正方形;
(2)有一个角是直角的菱形是正方形;
(3)有一组邻边相等的矩形是正方形;
(4)对角线互相垂直的矩形是正方形。
4.特殊的平行四边形之间的关系
矩形、菱形是特殊的平行四边形,正方形是更特殊的平行四边形,它既是矩形,又是菱形,它们之间的关系如图所示:
5.依次连接四边形各边中点所得到的四边形的形状:
(1)依次连接任意四边形各边中点所得到的四边形是平行变形;
(2)依次连接对角线相等的四边形各边中点所得到的四边形是菱形;
(3)依次连接对角线垂直的四边形各边中点所得到的四边形是矩形;
(4)依次连接对角线垂直且相等的四边形各边中点所得到的四边形是正方形;
冀教版初二数学知识点归纳相关 文章 :
★ 初二数学冀教版知识点
★ 冀教版初二数学知识点
★ 初中数学知识点归纳(冀教版)
★ 初一数学知识点归纳冀教版
★ 冀教版八年级数学上册目录
★ 冀教版二年级数学上册复习计划(2)
★ 冀教版初二上册数学期末试卷(2)
★ 五年级数学知识点冀教版
★ 初二数学教学论文范文
★ 中小学各学科学习方法总结
初二数学冀教版上册知识点
对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。
初二数学三角形知识点归纳
直角三角形
◆备考兵法
1.正确区分勾股定理与其逆定理,掌握常用的勾股数.
2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.
3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.
4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.
5.折叠问题是新中考 热点 之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间 想象力 ,注意折叠过程中,线段,角发生的变化,寻找破题思路.
三角形的重心
已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。
证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。
重心的几条性质:
1.重心和三角形3个顶点组成的3个三角形面积相等。
2.重心到三角形3个顶点距离的平方和最小。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3
4重心到顶点的距离与重心到对边中点的距离之比为2:1。
5.重心是三角形内到三边距离之积的点。
如果用塞瓦定理证,则极易证三条中线交于一点。
八年级 数学知识点
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的 方法 叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
数学 学习方法 技巧
自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。
解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
初二数学冀教版上册知识点相关 文章 :
★ 冀教版初二数学知识点
★ 冀教版八年级数学上册目录
★ 一年级数学知识点冀教版
★ 初中数学知识点归纳(冀教版)
★ 八年级数学学习方法指导
★ 中小学各学科学习方法总结
★ 初一数学知识点归纳冀教版
★ 八年级学习方法指导
★ 冀教版二年级数学上册复习计划(2)
★ 初二数学教学论文范文