本文目录一览:
- 1、数学选修1-1有哪些章节
- 2、归纳一下高中数学选修1-1椭圆部分的知识点 。
- 3、高二数学选修的必学知识点总结
- 4、【高中数学】选修1-2的基础知识有哪些
- 5、高中数学必修一知识点框架
- 6、高中数学选修1-1和1-2的重点知识有哪些?
数学选修1-1有哪些章节
第一章逻辑用语,考查内容可以涉及高中数学的绝大部分内容...特别是充要条件的探究题,数列、圆锥曲线、函数尤其突出,但平时练题的时候可能不会这样出题了...一般很简单...主要是对概念的判断....开始学比较简单...
第二章圆锥曲线...一定要好好学...高考压轴题内容...对必修一、必修二要求不高,属于一块新内容....当然,高中数学没有什么是绝对孤立的...比如圆锥曲线里面就有时要应用到函数思想与不等式的一些内容....
第三章导数...也是巨重要的...高考压轴题倒不一定,不过难度不小就是了...由于导数本身是一种函数,你说你必修一啥都不懂就有点危险了...函数的基本性质你需要复习一下,尤其是单调性.....
建议你还是提前预习一下...
归纳一下高中数学选修1-1椭圆部分的知识点 。
+ =1(ab0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1请不要开这样的玩笑每个学校的选修都不一样请附上课本名
高二数学选修的必学知识点总结
知识掌握的巅峰,应该在一轮复习之后,也就是在你把所有知识重新捡起来之后。这样看来,应对高二这一变化的较优选择,是在高二还在学习新知识时,有意识地把高一内容从头捡起,自己规划进度,提前复习。我整理的 高二数学 选修的必学知识点 总结 ,希望大家能够喜欢!
高二数学选修的必学知识点总结1
直线的倾斜角:
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α180°
直线的斜率:
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式。
注意:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
直线方程:
1.点斜式:y-y0=k(x-x0)
(x0,y0)是直线所通过的已知点的坐标,k是直线的已知斜率。x是自变量,直线上任意一点的横坐标;y是因变量,直线上任意一点的纵坐标。
2.斜截式:y=kx+b
直线的斜截式方程:y=kx+b,其中k是直线的斜率,b是直线在y轴上的截距。该方程叫做直线的斜截式方程,简称斜截式。此斜截式类似于一次函数的表达式。
3.两点式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么两点就重合了,相当于只有一个已知点了,这样不能确定一条直线。
如果x1=x2,y1y2,那么此直线就是垂直于X轴的一条直线,其方程为x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直线就是垂直于Y轴的一条直线,其方程为y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
对x的截距就是y=0时,x的值,对y的截距就是x=0时,y的值。x截距为a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推导y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b带入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
将ax+by+c=0变换可得y=-x/b-c/b(b不为零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析几何中更常用,用方程处理起来比较方便。
高二数学选修的必学知识点总结2
抛物线的性质:
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
焦半径:
焦半径:抛物线y2=2px(p0)上一点P(x0,y0)到焦点Fè???÷?
p2,0的距离|PF|=x0+p2.
求抛物线方程的 方法 :
(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.
(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).
高二数学选修的必学知识点总结3
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
二二次函数y=ax2+bx+c(a0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)0;
(3)、在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)0.若有,则函数y=f(x)在区间(a,b)内必有零点。
四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
高二数学选修的必学知识点总结相关 文章 :
★ 高二数学知识点总结选修2
★ 高二数学必背知识点总结
★ 高二数学选修2至3知识点总结
★ 高二数学知识点归纳总结
★ 高二数学知识点总结
★ 高二数学选修2—1第一章常用逻辑用语知识点复习
★ 高二数学知识点总结归纳
★ 高二数学考点知识点总结复习大纲
★ 高二数学知识点总结人教版
★ 高二数学知识点总结详细
【高中数学】选修1-2的基础知识有哪些
高中数学合集百度网盘下载
链接:
?pwd=1234
提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
高中数学必修一知识点框架
有很多的同学是非常的想知道,高中数学必修一的知识点框架有哪些的,我整理了相关信息,希望会对大家有所帮助!
1 高中数学必修一知识点框架图
1 高中如何提高数学成绩
一、课内重视听讲,课后及时复习
接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。
二、多做题,养成良好的解题习惯
要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。
1 高中提高数学成绩的技巧
1、提高高中数学成绩最重要的一点就是课前预习
相信各科老师下课之前都会要求学生提前预习下节课的内容。而高中数学作为逻辑性较强的一门课程,课前预习更是提高成绩必须做到的。
上课之前把要上的内容都预习一下,看一下课本要求,把重点和难理解的都标记出来,等着老师上课讲。这样一来,上课目前明确,由于心中有疑问,等着老师解答,上课的时候自然而然的就集中注意力跟着老师的思路走了。
2、提高数学成绩还要做到上课认真听讲
很多高中生数学成绩不好的原因就是上课不注意听,导致下课不会做题,时间长了上数学课精神就很难集中了,数学成绩也就越来越差。
所以高中生如果想提高数学成绩,上课一定要全神贯注的听讲,老师讲到课本上没有的内容、或者经典例题的详细解题过程都动笔记一下,免得上课没听明白,想复习的时候又找不到。
高中数学选修1-1和1-2的重点知识有哪些?
选修1-1有:第一章 常用逻辑用语
1.1 命题及其关系
1.2 充分条件与必要条件
1.3 简单的逻辑联结词
阅读与思考 “且”“或”“非”与“交”“并”“补”
1.4 全称量词与存在量词
小结
复习参考题
第二章 圆锥曲线与方程
2.1 椭圆
探究与发现 为什么截口曲线是椭圆
信息技术应用 用《几何画板》探究点的轨迹:椭圆
2.2 双曲线
探究与发现
2.3 抛物线
阅读与思考 圆锥曲线的光学性质及其应用
小结
复习参考题
第三章 导数及其应用
3.1 变化率与导数
3.2 导数的计算
探究与发现 牛顿法──用导数方法求方程的近似解
3.3 导数在研究函数中的应用
信息技术应用 图形技术与函数性质
3.4 生活中的优化问题举例
实习作业 走进微积分
小结
复习参考题
选修1-2有:第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
实习作业
小结
复习参考题
第二章 推理与证明
2.1 合情推理与演绎推理
阅读与思考 科学发现中的推理
2.2 直接证明与间接证明
小结
复习参考题
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
小结
复习参考题
第四章 框图
4.1 流程图
4.2 结构图
信息技术应用 用word2002绘制流程图
小结
复习参考题