黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

函数平面向量知识点归纳(平面向量知识点梳理笔记)

本文目录一览:

数学必修4向量公式归纳

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量,它可以形象化地表示为带箭头的线段。下面我给大家带来数学必修4向量公式,希望对你有帮助。

目录

高中数学必修4向量公式

高中数学必修4目录

高中数学学习方法

高中数学必修4向量公式

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

3、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ0时,λa与a同方向;

当λ0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上伸长为原来的∣λ∣倍;

当∣λ∣1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

高中数学必修4目录

第一章 三角函数

1.1 任意角和弧度制

1.2 任意角的三角函数

1.3 三角函数的诱导公式

1.4 三角函数的图象与性质

1.5 函数y=Asin(ωx ψ)

1.6 三角函数模型的简单应用

本章综合

第二章 平面向量

2.1 平面向量的实际背景及基本概念

2.2 平面向量的线性运算

2.3 平面向量的基本定理及坐标表示

2.4 平面向量的数量积

2.5 平面向量应用举例

本章综合

第三章 三角恒等变换

3.1 两角和与差的正弦、余弦和正切公式

3.2 简单的三角恒等变换

本章综合

高中 数学 学习 方法

(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

(7)学会从多角度、多层次地进行 总结 归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

(8)经常在做题后进行一定的“ 反思 ”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解 其它 问题时,是否也用到过。

(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

数学必修4向量公式归纳相关 文章 :

★ 数学必修4向量公式归纳

★ 数学必修4平面向量公式总结

★ 高中数学必修4平面向量知识点总结

★ 高一数学必修4平面向量知识点总结

★ 高中数学必修4平面向量知识点

★ 人教版高二数学上向量的三角形不等式归纳

★ 高二数学必修4向量模的计算知识点

★ 高一数学必修4第二章平面向量基本定理及坐标表示知识点

★ 高一数学必修4第二章平面向量基本定理及坐标表示知识点(2)

★ 高一数学必修4知识点总结(人教版)

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

ORZ 高中函数 三角函数,立体几何,概率,平面向量的知识点 , 尽量 详尽些。

你好:韩_渃熙

1.函数:

映射与函数,函数的定义域和值域,幂函数,指数函数,对数函数,函数的单调性、奇偶性、周期性,复合函数

2.三角函数

三角函数的定义和种类 定义域,值域。正弦定理,余弦定理,面积公式

半角公式,倍角公式,积化和差,和差化积,万能公式

3.立体几何

直线:平行和垂直,异面直线, 异面直线的距离。

直线与平面关系(包含,垂直,平行)

平面与平面关系(相交,平行)

二面角,二面角定理。

三棱锥,四棱柱,圆柱,圆锥,圆台,球

4.概率

概率的定义,排列,组合

二次项定理

5.向量

向量的定义 几何意义 向量的运算 向量和复数(不记得得数是不是向量里面的)

好了,我记得的就这么多,我不上高中很多年了,或许有些和现在的教材不一样

希望对你有帮助

高一数学必修4函数知识点总结

§1.2.1、函数的概念

1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.

2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.

§1.2.2、函数的表示法

1、 函数的三种表示方法:解析法、图象法、列表法.

§1.3.1、单调性与最大(小)值

1、 注意函数单调性证明的一般格式:

§1.3.2、奇偶性

1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.

2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.

第二章、基本初等函数(Ⅰ)

§2.1.1、指数与指数幂的运算

1、 一般地,如果,那么叫做 的次方根。其中.

若需要可以发邮箱

高中数学平面向量知识点总结概括

《高中数学》是由人民教育出版社出版的图书,该书由人民教育出版社、课程教材研究所、数学课程教材研究开发中心共同编制,内容包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。下面是我精心收集的高中数学有关平面向量知识点总结概括,希望能对你有所帮助。

一、定比分点

定比分点公式(向量P1P=λ向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数λ,使向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式。

二、三点共线定理

若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。

三、三角形重心判断式

在△ABC中,若GA+GB+GC=O,则G为△ABC的重心。

四、向量共线的重要条件

若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。

a//b的重要条件是xy—xy=0。

零向量0平行于任何向量。

五、向量垂直的充要条件

a⊥b的充要条件是ab=0。

a⊥b的充要条件是xx+yy=0。

零向量0垂直于任何向量。

设a=(x,y),b=(x,y)。

六、向量的运算

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x,y+y)。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=—b,b=—a,a+b=0。0的反向量为0

AB—AC=CB。即“共同起点,指向被减”

a=(x,y) b=(x,y) 则a—b=(x—x,y—y)。

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的'有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

5、数与向量的乘法满足下面的运算律

结合律:(λa)b=λ(ab)=(aλb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa。

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb。

数乘向量的消去律:

①如果实数λ≠0且λa=λb,那么a=b。

②如果a≠0且λa=μa,那么λ=μ。

6、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+—∣a∣∣b∣。

向量的数量积的坐标表示:ab=xx+yy。

7、向量的数量积的运算律

ab=ba(交换律);

(λa)b=λ(ab)(关于数乘法的结合律);

(a+b)c=ac+bc(分配律);

向量的数量积的性质

aa=|a|的平方。

a⊥b〈=〉ab=0。

|ab|≤|a||b|。

8、向量的数量积与实数运算的主要不同点

8.1向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

8.2向量的数量积不满足消去律,即:由ab=ac(a≠0),推不出b=c。

8.3|ab|≠|a||b|

8.4由a|=|b|,推不出a=b或a=—b。

七、向量的向量积

1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

2、向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

3、向量的向量积运算律

a×b=—b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c。

注:向量没有除法,“向量AB/向量CD”是没有意义的。

4、向量的三角形不等式

1、∣∣a∣—∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

①当且仅当a、b反向时,左边取等号;

②当且仅当a、b同向时,右边取等号。

2、∣∣a∣—∣b∣∣≤∣a—b∣≤∣a∣+∣b∣。

①当且仅当a、b同向时,左边取等号;

②当且仅当a、b反向时,右边取等号。

  • 评论列表:
  •  辙弃柠木
     发布于 2022-10-28 09:37:01  回复该评论
  • 函数的定义和种类 定义域,值域。正弦定理,余弦定理,面积公式半角公式,倍角公式,积化和差,和差化积,万能公式3.立体几何直线:平行和垂直,异面直线, 异面直线的

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.