本文目录一览:
- 1、指数型函数是什么?
- 2、指数函数基础知识...
- 3、指数型函数是什么?
指数型函数是什么?
指数型函数意思就是形式像指数函数,但不是指数函数,可以和反比例函数模型类比的函数。
比如f(x)=a^(x+1),f(x)=2a^x都不是指数函数,这些都叫做指数型函数,指数函数是函数中的一种,而指数型函数是函数中的数是指数。
指数函数的特点及应用情况:
指数函数也可以实现区间映射,但对数函数和指数函数互为反函数,因此对数函数和指数函数映射的区间也正好相反。
指数函数在自然科学和经济生活中有着广泛的应用,要了解指数函数的实际应用举例,能够应用指数函数的性质解决简单的实际问题。指数函数对很多的真实世界问题—比如说人口增加、放射性衰变、热辐射,以及很多其他的现象,都能够用来建立建模。
指数函数基础知识...
指数函数
指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
不懂发消息问我,我教你.
指数型函数是什么?
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a0,a≠1)叫做指数函数,函数的定义域是R。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。
指数函数的性质
指数函数的性质是:指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。