本文目录一览:
人教版七年级下册数学第七章知识点总结,具体点,谢
版本可能变了,不过你自己找找看吧
七年级下学期数学知识梳理
第五章 相交线与平行线
一、知识结构图
相交线
相交线 垂线
同位角、内错角、同旁内角
平行线
平行线及其判定
平行线的判定
平行线的性质
平行线的性质
命题、定理
平移
二、知识定义
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角.
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角.
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线.
平行线:在同一平面内,不相交的两条直线叫做平行线.
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角.
内错角:∠2与∠6像这样的一对角叫做内错角.
同旁内角:∠2与∠5像这样的一对角叫做同旁内角.
命题:判断一件事情的语句叫命题.
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移.
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点.
三、定理与性质
对顶角的性质:对顶角相等.
垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直.
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.
平行公理:经过直线外一点有且只有一条直线与已知直线平行.
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
平行线的性质:
性质1:两直线平行,同位角相等.
性质2:两直线平行,内错角相等.
性质3:两直线平行,同旁内角互补.
平行线的判定:
判定1:同位角相等,两直线平行.
判定2:内错角相等,两直线平行.
判定3:同旁内角相等,两直线平行.
四、经典例题
例1 如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数.
例2 如图AD平分∠CAE,∠B = 350,∠DAE=600,那么∠ACB等于多少?
例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不
相邻的一个内角的2倍,则这个三角形各角的度数为( ).
A.450、450、900 B.300、600、900
C.250、250、1300 D.360、720、720
例4 已知如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.
例5 如图,AB∥CD,EF分别与AB、CD交于G、H,MN⊥AB于G,∠CHG=1240,则∠EGM等于多少度?
第六章 平面直角坐标系
一、知识结构图
有序数对
平面直角坐标系
平面直角坐标系
用坐标表示地理位置
坐标方法的简单应用
用坐标表示平移
二、知识定义
有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.
横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点.
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标.
象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限.坐标轴上的点不在任何一个象限内.
三、经典例题
例1 一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,如果A1求坐标为(3,0),求点 A5的坐标.
例2 如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为( )
A、(0,3) B、(2,3) C、(3,2) D、(3,0)
例3 如图2,根据坐标平面内点的位置,写出以下各点的坐标:
A( ),B( ),C( ).
例4 如图,面积为300px2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数),
(1)、求点D、E的坐标
(2)、求四边形ACED的面积.
例5 过两点A(3,4),B(-2,4)作直线AB,则直线AB( )
A、经过原点 B、平行于y轴
C、平行于x轴 D、以上说法都不对
第七章 三角形
一、知识结构图
边
与三角形有关的线段 高
中线
角平分线
三角形的内角和 多边形的内角和
三角形的外角和 多边形的外角和
二、知识定义
三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线.
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
多边形的内角:多边形相邻两边组成的角叫做它的内角.
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形.
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面.
三、公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°.
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形.
(2)n边形共有条对角线.
四、经典例题
例1 如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:①AS=AR;②QP∥AR;③△BRP≌△CSP,其中( ).
(A)全部正确 (B)仅①正确 (C)仅①、②正确 (D)仅①、③正确
例2 如图,结合图形作出了如下判断或推理:
①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;
②如图乙,如果AB∥CD,那么∠B=∠D;
③如图丙,如果∠ACD=∠CAB,那么AD∥BC;
④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是( )个.
(A)1 (B)2 (C)3 (D)4
例3 在如图所示的方格纸中,画出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能说明它们为什么全等吗?
例4 测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管口径AB正对着量具上的50mm刻度,那么小管口径AB的长是多少?
例5 在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:作一条与轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标.
第八章 二元一次方程组
一、知识结构图
设未知数,列方程
解 代入法
方 加减法
程 (消元)
组
检验
二、知识定义
二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b≠0).
二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组.
二元一次方程的一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解.
二元一次方程组的一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组.
消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.
代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.
加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.
三、经典例题
例1 用加减消元法解方程组,由①×2—②得.
例2 如果是同类项,则、的值是( )
A、=-3,=2 B、=2,=-3
C、=-2,=3 D、=3,=-2
例3 计算:
例4 王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元.其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元.问王大伯一共获纯利多少元?
例5 已知关于x、y的二元一次方程组的解满足二元一次方程,求的值.
第九章 不等式与不等式组
一、知识结构图
实际问题
(包含不等关系)
数学问题
(一元一次不等式(组))
设未知数,列不等式(组)
解
不
等
式
组
数学问题的解
(不等式(组)的解决)
实际问题的答案
检验
二、知识定义
不等式:一般地,用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式.
不等式的使不等式成立的未知数的值,叫做不等式的解.
不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.
一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.
一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.
一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.
三、定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变.
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
四、经典例题
例1 当x 时,代数代2-3x的值是正数.
例2 一元一次不等式组的解集是 ( )
A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2
例3 已知方程组的解为负数,求k的取值范围.
例4 某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
例5 某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式.
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.
第十章 数据的收集、整理与描述
一、知识结构图
制表 绘图
二、知识定义
全面调查:考察全体对象的调查方式叫做全面调查.
抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.
总体:要考察的全体对象称为总体.
个体:组成总体的每一个考察对象称为个体.
样本:被抽取的所有个体组成一个样本.
样本容量:样本中个体的数目称为样本容量.
频数:一般地,我们称落在不同小组中的数据个数为该组的频数.
频率:频数与数据总数的比为频率.
组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.
三、经典例题
例1 某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是( )
A.720,360 B.1000,500 C.1200,600 D.800,400
例2 某音乐行出售三种音乐CD ,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用( )
A.扇形统计图 B.折线统计图 C.条形统计图 D.以上都可以
例3 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5-99.5)出现的频率为15 %,则这一次抽样调查的容量是________ .
⑵第三小组(69.5~79.5)的频数是_______,频率是________.
例4 如图,是一位护士统计一位病人的体温变化图:根据统计图回答下列问题:
⑴病人的最高体温是达多少?
⑵什么时间体温升得最快?
例5 在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5~99.5)出现的频率为15 %,则这一次抽样调查的容量是________ .
⑵第三小组(69.5~79.5)的频数是_______,频率是________.
新版初一数学下册知识点归纳
天才就是勤奋曾经有人这样说过。如果这话不完全正确,那至少在很大程度上是正确的。学习,就算是天才,也是需要不断练习与记忆的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初中 一年级数学 下册知识点 总结
整式的乘法与因式分解
一、整式乘除法
单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.ac5?bc2=(a?b)?(c5?c2)=abc5+2=abc7注:运算顺序先乘方,后乘除,最后加减
单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照顺序,注意常数项、负号.本质是乘法分配律。
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(a+b)(a-b)=a2-b2
完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.(a±b)2=a2±2ab+b2
因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式.
因式分解 方法 :
1、提公因式法.关键:找出公因式
公因式三部分:①系数(数字)一各项系数公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法.①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、b可以是数也可是式子②a2±2ab+b2=(a±b)2完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方.
③x3-y3=(x-y)(x2+xy+y2)立方差公式
3、十字相乘(x+p)(x+q)=x2+(p+q)x+pq
因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差
添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证
初一下册数学《三角形》知识点
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
初一下册数学复习知识点
概念知识
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形 叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
新版初一数学下册知识点归纳相关 文章 :
★ 初一数学下册知识点归纳总结
★ 初一数学下册知识点汇总
★ 初一数学下册基本知识点总结
★ 初一数学下册知识点
★ 初一下册数学重点知识点总结归纳
★ 人教版初一数学下册知识点复习总结备战中考
★ 初一下册数学知识点总结
★ 初一下期数学知识点总结
★ 七年级下数学知识点总结
★ 初一数学下册知识点总结
七年级下数学知识点总结
人教版 七年级数学 下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。下面我给大家分享一些七年级下数学知识点,希望能够帮助大家,欢迎阅读!
↓↓↓点击获取"七年级知识点"↓↓↓
★ 初中数学圆的知识点归纳
★ 怎样快速记忆初一数学公式
★ 七年级英语必备知识点总结
★ 七年级语文知识点梳理
七年级下数学知识点1
第一章 相交线与平行线
一、知识框架
二、知识概念
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质
对顶角的性质:对顶角相等。
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案. 重点:垂线和它的性质,平行线的判定 方法 和它的性质,平移和它的性质,以及这些的组织运用. 难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
七年级下数学知识点2
第一章 平面直角坐标系
一.知识框架
二.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。
七年级下数学知识点3
第一章 三角形
一.知识框架
二.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。
第八章 二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法. 重点:二元一次方程组的解法,列二元一次方程组解决实际问题. 难点:二元一次方程组解决实际问题
七年级下数学知识点4
第九章 不等式与不等式组
一.知识框架
二、知识概念
1.用符号“”“”“≤ ”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
7.定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
七年级下数学知识点5
第十章 数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
七年级下册数学知识点总结
第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角