黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

线性代数考研数学一知识点及真题(考研数学线性代数内容)

本文目录一览:

线性代数必备知识点

以下是考研数学线性代数主要考点的介绍:

一、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:1、有唯一零解;2、有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩-线性相关、无关-线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表示的联系

非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。

二、行列式与矩阵

行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的比较综合的题。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵相关的重要公式、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。

三、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

本章知识要点如下:

1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2.相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3.矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

4.实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

四、二次型

这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵使其可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

这四个方面是历年考研数学线代部分的重点,希望考生以此为重点,由点及面,复习好线性代数这部分。

考研数学一的知识点归纳

高数部分

考研数学一高数各部分常见题型和知识点。

一. 函数、极限与连续

1 求分段函数的复合函数;

2 求极限或已知极限确定原式中的常数;

3讨论函数的连续性,判断间断点的类型;

4 无穷小阶的比较;

5讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实 根。

二.一元函数微分学

1 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;

2利用洛比达法则求不定式极限;

3 讨论函数极值,方程的根,证明函数不等式;

4 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足......”,此类问题证明经常需要构造辅助函数;

5 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;

6 利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三.一元函数积分学

1 计算题:计算不定积分、定积分及广义积分;

2关于变上限积分的题:如求导、求极限等

3 有关积分中值定理和积分性质的证明题;

4定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,

压力,引力,变力作功等;

5 综合性试题.

四.向量代数和空间解析几何

1计算题:求向量的数量积,向量积及混合积;

2 求直线方程,平面方程;

3判定平面与直线间平行、垂直的关系,求夹角;

4 建立旋转面的方程;

5 与多元函数微分学在几何上的应用或与线性代数相关联的题目。

五.多元函数的微分学

1 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;

2 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;

3 求二元、三元函数的方向导数和梯度;

4 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;

5多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

六.多元函数的积分学

1二重、三重积分在各种坐标下的计算,累次积分交换次序;

2第一型曲线积分、曲面积分计算;

3 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;

4第二型(对坐标)曲面积分的计算,高斯公式及其应用;

5 梯度、散度、旋度的综合计算;

6 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。

七.无穷级数

1 判定数项级数的收敛、发散、绝对收敛、条件收敛;

2 求幂级数的收敛半径,收敛域;

3 求幂级数的和函数或求数项级数的和;

4将函数展开为幂级数(包括写出收敛域);

5 将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);

6综合证明题。

八.微分方程

1 求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;

2 求解可降阶方程;

3 求线性常系数齐次和非齐次方程的特解或通解;

4 根据实际问题或给定的条件建立微分方程并求解;

5 综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

2011年考研数学线性代数重点内容和典型题型分析?

名师指导:概率论与数理统计的考试重难点分析

万学海文——李兰巧

2011年的考试大纲已经出炉,11年大纲概率部分和10年完全没有区别,所以考生在复习的时候可以按照既定计划进行复习即可。

概率与数理统计这门课程从试卷本身的难度的话,在三门课程中应该算最低的,但是从每年得分的角度来说,这门课程是三门课中得分率最低的,由于它的概念比较多,式子比较复杂,尤其是统计部分,很多同学在初学的时候都会被吓住,有的会选择放弃学概率。其实是非常不明智的,因为我总结这门课的最大特点是,题型比较单一,解题手法也比较单一,比如大题基本上就围绕在随机变量函数的分布,随机变量的数字特征,参数的矩估计和最大似然估计这几块。这在《全国硕士研究生入学统一考试数学120种常考题型精讲》中重点介绍了相关题型,并且给出了独特和详细的求解步骤,考生认真学习后,必能轻松过关。这门课程,很多同学觉得难,难在两点,一是古典概率,那块儿的计算一不小心就数错了,或者是不知道怎么来数数,其实这个大家放心,考研只会考简单的古典概率的计算,复杂的不会考,所以这部分可以很快通过;二是数理统计部分,这部分式子比较复杂,很多人学到这里就脑袋大,其实不用担心,这部分需要你真正去记忆的很少。

概率论与数理统计一共是八章,前五章是概率论,数学一、数学三都要考的。数理统计是后面三章,数学一和数学三是要考的,但是估计量的评选标准、置信区间和假设检验只有数学一要求。作为前面五章的概率论,我简单介绍一下。

第一章随机事件和概率,是后续各章的基础。它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。第一章很少单独命题,经常是结合随机变量来考察的。09年、10年连续两年利用古典概型结合随机变量已解答题的形式考察了。

第二章一维随机变量及其分布, 这部分的重点内容是常见分布,同时它是学习二维随机变量的基础。近几年考察一维随机变量的题目相对减少,更多的是考察二维随机变量的有关题目

第三章二维随机变量,是考试的重点之重点。它的重点内容是随机变量函数的分布,随机变量的独立性,有关随机变量的联合分布、边缘分布和条件分布之间的关系。这在《2011年全国硕士研究生入学统一考试数学考试大纲配套强化指导》中详细阐述了常考题型的解题步骤,帮助考生准确处理相关题目。常见分布的重点在均匀分布,这方面是经常命题的。因此,作为这章来综合题相对多一些。

第四章随机变量的数字特征,这里面主要牵扯到一些重点的概念,如均值方差等,重点内容是讨论随机变量的相关性和独立性之间的关系。这也是重点章。每年必须考的一章。

第五章有三个内容,分别是切比雪夫不等式、大数定律和中心极限定理。这不是重点章,考的机会也比较少,但至少把这三个概念要复习一下。

这是概率论的前五章,重点章是三、四章。

数理统计另外三章,那就是第六章基本概念、第七章参数估计、第八章是假设检验。重点是第七章参数估计。第六章的基本概念目前考得比较多的。作为第七章的有三个内容,分别是点估计、区间估计和估计量的评选标准。考得比较多的有关点估计的两种方法,分别是矩法和最大似然法。估计量的评选标准、置信区间和假设检验只有数一做要求,估计量的第一个评选标准无偏性是考试的重点,它结合数字特征经常命题,数学一的同学还是要重视的。置信区间和假设检验的考试频率是非常低的,尤其是假设检验,在1998年数学仅考过一道题,后来就没有考过,所谓第八章不作为重点。

考生在复习的时候要全面复习、重点突出。整个概率论可以说一句话,里面没有任何技巧,只要把基本概念、基本方法掌握住的话,肯定会把这部分题答好。但目前同学反映比较多的概率论和数理统计得分比较低,这是由于概率论和数理统计,与微积分、线性代数的学科特点不一样,它是一种不确定的数学,因此在复习的时候是把基本概念复习好,掌握最基本有关的方法。

我正在玩搜狐微博,快来“关注”我,了解我的最新动态吧。

考研数学一的线性代数的全部考试范围。

一、行列式

考试内容:行列式的概念和基本性质、行列式按行(列)展开定理。

考试要求:

1、了解行列式的概念,掌握行列式的性质;

2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。

二、矩阵

考试内容:矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵矩阵的秩、矩阵的等价、分块矩阵及其运算。

考试要求

1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质;

2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;

3、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;

4、理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法;

5、了解分块矩阵及其运算。

三、向量

考试内容

向量的概念、向量的线性组合与线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量空间及其相关概念、维向量空间的基变换和坐标变换、过渡矩阵、向量的内积、线性无关向量组的正交规范化方法、规范正交基、正交矩阵及其性质。

考试要求

1、理解n维向量、向量的线性组合与线性表示的概念;

2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法;

3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩;

4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系;

5、了解n维向量空间、子空间、基底、维数、坐标等概念;

6、了解基变换和坐标变换公式,会求过渡矩阵;

7、了解内积的概念,掌握线性无关向量组正交规范化的施密特方法;

8、了解规范正交基、正交矩阵的概念以及它们的性质。

四、线性方程组

考试内容:线性方程组的克莱姆法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件解空间、非齐次线性方程组的通解。

考试要求

1、会用克莱姆法则;

2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件;

3、理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法;

4、理解非齐次线性方程组解的结构及通解的概念;

5、掌握用初等行变换求解线性方程组的方法。

五、矩阵的特征值和特征向量

考试内容:矩阵的特征值和特征向量的概念、性质、相似变换、相似矩阵的概念及性质。

考试要求

1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量;

2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法;

3、掌握实对称矩阵的特征值和特征向量的性质。

六、二次型

考试内容:二次型及其矩阵表示合同变换、与合同矩阵二次型的秩惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性。

考试要求

1、掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理;

2、掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形;

3、理解正定二次型、正定矩阵的概念,并掌握其判别法。

  • 评论列表:
  •  寻妄寒洲
     发布于 2022-12-19 08:43:25  回复该评论
  • 计,与微积分、线性代数的学科特点不一样,它是一种不确定的数学,因此在复习的时候是把基本概念复习好,掌握最基本有关的方法。我正在玩搜狐微博,快来“关注”我,了解我的最新动态吧。考研数学一的线性代数的全部考试范围。一、行列式考试内容:行列式的概念和基本性质、行列式按行(列)展开定理。考试要求
  •  辙弃森槿
     发布于 2022-12-19 06:57:42  回复该评论
  • 学到这里就脑袋大,其实不用担心,这部分需要你真正去记忆的很少。 概率论与数理统计一共是八章,前五章是概率论,数学一、数学三都要考的。数理统计是后面三章,数学一和数学三是要考的,但是估计量的评选
  •  森槿夙世
     发布于 2022-12-19 03:22:26  回复该评论
  • 容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。本章知识要点如下:1.特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。2.相似矩阵及其性质,需要区分矩阵的相似、等
  •  怎忘眉妩
     发布于 2022-12-19 05:42:04  回复该评论
  • 次线性方程组的解。二、行列式与矩阵行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算
  •  莣萳等灯
     发布于 2022-12-19 09:42:25  回复该评论
  • 化指导》中详细阐述了常考题型的解题步骤,帮助考生准确处理相关题目。常见分布的重点在均匀分布,这方面是经常命题的。因此,作为这章来综合题相对多一些。 第四章随机变量的数字特征,这里面主要牵扯到一些重点的概念,如均值方差等,重点内容是讨论随机变量的相关性和独立性之间的关系。这也是重点章。每年必须考

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.