本文目录一览:
- 1、高一数学知识点梳理归纳
- 2、高一数学期中知识点总结
- 3、人教版高一数学教材知识点总结
- 4、高一数学必修一知识点总结
- 5、高一数学必修四知识点
- 6、苏教版高一数学知识点
高一数学知识点梳理归纳
失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。
高一数学必修四知识点梳理
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
高 一年级数学 必修三知识点
1、概念:
(1)回归直线方程
(2)回归系数
2.最小二乘法
3.直线回归方程的应用
(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项
(1)做回归分析要有实际意义;
(2)回归分析前,先作出散点图;
(3)回归直线不要外延。
数学学习方法 技巧
答题少费时多办事
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的 经验 ,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
错一次 反思 一次
每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。
因此平时要注意把错题记下来,做错题笔记包括三个方面:
(1)记下错误是什么,用红笔划出。
(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。
(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。
分析试卷 总结 经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
(1)遗憾之错。就是分明会做,反而做错了的题。
(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。
(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。
优秀是一种习惯
柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
高一数学知识点梳理归纳相关 文章 :
★ 高一数学知识点全面总结
★ 高一数学知识点复习归纳
★ 高一数学知识点总结归纳
★ 高一数学知识点归纳总结
★ 高一数学重要知识点梳理
★ 高一数学知识点汇总大全
★ 高一数学知识点(考前必看)
★ 高一数学知识点小归纳
★ 高中阶段的高一数学课本知识点归纳
★ 高一数学必修一知识点梳理
高一数学期中知识点总结
知识是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的知识都需要大量的记忆和练习来巩固。虽然辛苦,但也伴随着快乐!下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。
高一数学必修四知识点梳理
1.回归分析:
就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析 方法 。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
2.线性回归方程
设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
其中。
3.线性相关性检验
线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果
如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。
高 一年级数学 必修三知识点
1、算法概念:
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.
2、算法的特征
①有限性:算法中的步骤序列是有限的,必须在有限操作之后停止,不能是无限的。
②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可。
③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不性:求解某一个问题的解法不一定是的,对于一个问题可以有不同的算法。
⑤普通性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算其计算都要经过有限、事先设计好的步骤加以解决。
概率
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,即不可能同时发生的两个事件,称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,即不能同时发生且必有一个发生的两个事件,称事件A与事件B互为对立事件;
概率加法公式:当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
高一 数学 学习方法 参考
1.认真研读《考试说明》和《考纲》
《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是 理性思维 的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题
参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的.“题眼”及巧妙之处,收益将更大。
4.研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。
5.答题少费时多办事
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的 经验 ,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
高一数学期中知识点 总结 相关 文章 :
★ 高一数学的期中知识点是哪些
★ 高一数学知识点(考前必看)
★ 高一数学知识点汇总大全
★ 高中高一数学知识点总结
★ 高一数学期末知识点总结
★ 高一数学期末考试知识点总结
★ 高一数学知识点总结(人教版)
★ 高一数学知识点总结期末必备
★ 高一数学知识点全面总结
★ 高一数学知识点总结归纳
人教版高一数学教材知识点总结
伟大的成绩和辛勤劳动是成正比例的,有一分劳动就有一分收获,积累,从少到多,奇迹就可以创造出来。学习也是一样的,需要积累,从少变多。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。
高一上册数学必修一知识点梳理
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平 面相 交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
高一数学必修五知识点 总结
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.
⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.
⑸在等差数列{a}中,S=a,S=b(nm),则S=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.
⑺记等差数列{a}的前n项和为S.①若a0,公差d0,则当a≥0且a≤0时,S;②若a0,公差d0,则当a≤0且a≥0时,S最小.
高一数学必修四知识点梳理
1.回归分析:
就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析 方法 。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
2.线性回归方程
设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
其中。
3.线性相关性检验
线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果
如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。
人教版高一数学教材知识点总结相关 文章 :
★ 高一数学知识点总结(人教版)
★ 高中阶段的高一数学课本知识点归纳
★ 高一数学知识点人教版
★ 高一数学知识点总结归纳
★ 高一数学课本的相关主要知识点
★ 高一数学必修一知识点汇总
★ 高一数学人教版上学期知识点
★ 高一数学必修4知识点总结(人教版)
★ 人教版高中数学知识点提纲
★ 人教版高中数学必修一知识点
高一数学必修一知识点总结
数学知识点是高考的基础,掌握 高一数学 知识点将对高考复习起到重要作用,高一数学必修一知识点 总结 有哪些你知道吗?一起来看看高一数学必修一知识点总结,欢迎查阅!
高1数学知识点总结
一、集合、简易逻辑(14课时,8个)
1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)
1.不等式;2.不等式的'基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
十一、概率(12课时,5个)
1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。
十三、极限(12课时,6个)
1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
十四、导数(18课时,8个)
1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的最大值和最小值。
十五、复数(4课时,4个)
1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二二项方程的解法。
数学必修一知识点整理集合与函数概念
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…}如:{我校的 篮球 队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com
非负整数集(即自然数集)记作:N
正整数集:N_或N+
整数集:Z
有理数集:Q
实数集:R
1)列举法:{a,b,c……}
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x-32},{x|x-32}
3)语言描述法:例:{不是直角三角形的三角形}
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合
(2)无限集含有无限个元素的集合
(3)空集不含任何元素的集合
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?B,B?C,那么A?C
④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).
基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈_.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
函数的应用
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
必修一函数重点知识整理
1. 函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x) ;
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;
5.方程k=f(x)有解 k∈D(D为f(x)的值域);
6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.(1) (a0,a≠1,b0,n∈R+);
(2) l og a N= ( a0,a≠1,b0,b≠1);
(3) l og a b的符号由口诀“同正异负”记忆;
(4) a log a N= N ( a0,a≠1,N0 );
8. 判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解。
高一数学必修一知识点总结相关 文章 :
★ 高一数学必修一知识点汇总
★ 高中数学必修1知识点总结
★ 高一数学必修一知识点总结
★ 高一数学知识点汇总大全
★ 高一数学必修1对数函数知识点总结
★ 高一数学必修1函数的知识点归纳
★ 高一数学必修一知识点总结归纳
★ 高一数学必修1知识点归纳
★ 高中数学必修一复习提纲
★ 高一数学必修1知识整理
高一数学必修四知识点
高中阶段学科知识交叉多、综合性强,以理解和应用为主,要求学生要有更强的分析、概括、综合、实践的能力。在高中阶段,不能只局限于知识的学习,而要重视观察、思维、分析、阅读、动手等能力的培养。下面是我给大家带来的 高一数学 知识点,希望大家能够喜欢!
高一数学知识点汇总
空间几何体表面积体积公式:
1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
练习题:
1.正四棱锥P—ABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()
(A)五面体
(B)七面体
(C)九面体
(D)十一面体
2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()
(A)9
(B)18
(C)36
(D)64
3.下列说法正确的是()
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等
高一数学知识点 总结
一)两角和差公式 (写的都要记)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA_cosA
三)半角的只需记住这个:
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降幂公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降幂公式可推出以下常用的化简公式
1-cosA=sin^(A/2)_2
1-sinA=cos^(A/2)_2
高一数学知识点梳理
重点难点讲解:
1.回归分析:
就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析 方法 。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
2.线性回归方程
设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
其中。
3.线性相关性检验
线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果
如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。
典型例题讲解:
例1.从某班50名学生中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建立该10名学生的物理成绩对数学成绩的线性回归模型。
解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为,
计算,代入公式得∴所求线性回归模型为=0.74x+22.28。
说明:将自变量x的值分别代入上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。大家可以在老师的帮助下对自己班的数学、化学成绩进行分析。
例2.假设关于某设备的使用年限x和所支出的维修费用y(万元),有如下的统计资料:x23456y2.23.85.56.57.0
若由资料可知y对x成线性相关关系。试求:
(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少?
分析:本题为了降低难度,告诉了y与x间成线性相关关系,目的是训练公式的使用。
解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536于是b=,。∴线性回归方程为:=bx+a=1.23x+0.08。
(2)当x=10时,=1.23×10+0.08=12.38(万元)即估计使用10年时维修费用是12.38万元。
说明:本题若没有告诉我们y与x间是线性相关的,应首先进行相关性检验。如果本身两个变量不具备线性相关关系,或者说它们之间相关关系不显著时,即使求出回归方程也是没有意义的,而且其估计与预测也是不可信的。
例3.某省七年的国民生产总值及社会商品零售总额如下表所示:已知国民生产总值与社会商品的零售总额之间存在线性关系,请建立回归模型。年份国民生产总值(亿元)
社会商品零售总额(亿元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合计4333.012194.24
解:设国民生产总值为x,社会商品零售总额为y,设线性回归模型为。
依上表计算有关数据后代入的表达式得:∴所求线性回归模型为y=0.445957x+37.4148,表明国民生产总值每增加1亿元,社会商品零售总额将平均增加4459.57万元。
例4.已知某地每单位面积菜地年平均使用氮肥量xkg与每单位面积蔬菜每年平均产量yt之间的关系有如下数据:年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份19931994199519961997199871999x(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x与y之间的相关系数,并检验是否线性相关;
(2)若线性相关,求蔬菜产量y与使用氮肥量之间的回归直线方程,并估计每单位面积施肥150kg时,每单位面积蔬菜的年平均产量。
分析:(1)使用样本相关系数计算公式来完成;(2)查表得出显著水平0.05与自由度15-2相应的相关系数临界值r0.05比较,若rr0.05,则线性相关,否则不线性相关。
解:(1)列出下表,并用科学计算器进行有关计算:i123456789101112131415xi707480788592909592108115123130138145yi5.16.06.87.89.010.210.012.011.511.011.812.212.512.813.0xiyi357444544608.4765938.490011401058118813571500.616251766.41885,.故蔬菜产量与施用氮肥量的相关系数:r=由于n=15,故自由度15-2=13。由相关系数检验的临界值表查出与显著水平0.05及自由度13相关系数临界值r0.05=0.514,则rr0.05,从而说明蔬菜产量与氮肥量之间存在着线性相关关系。
(2)设所求的回归直线方程为=bx+a,则∴回归直线方程为=0.0931x+0.7102。
当x=150时,y的估值=0.0931×150+0.7102=14.675(t)。
说明:求解两个变量的相关系数及它们的回归直线方程的计算量较大,需要细心谨慎计算,如果会使用含统计的科学计算器,能简单得到,这些量,也就无需有制表这一步,直接算出结果就行了。另外,利用计算机中有关应用程序也可以对这些数据进行处理。
高一数学知识点相关 文章 :
★ 高一数学必修4知识点
★ 高一数学必修4知识点总结(人教版)
★ 高一数学必修四知识点总结
★ 高一数学必修4知识点总结
★ 高中数学必修四第一章知识点总结
★ 高一数学必修4三角函数知识点总结
★ 高一数学必修4三角函数知识点总结
★ 高一数学必修四三角恒等变换知识点
★ 高一数学必修4教案
★ 高中数学必修4平面向量知识点
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
苏教版高一数学知识点
失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。
高一数学必修五知识点 总结
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).
⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.
⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).
⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.
⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.
⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.
⑸在等差数列{a}中,S=a,S=b(nm),则S=(a-b).
⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.
⑺记等差数列{a}的前n项和为S.①若a0,公差d0,则当a≥0且a≤0时,S;②若a0,公差d0,则当a≤0且a≥0时,S最小.
高一数学必修四知识点梳理
1.回归分析:
就是对具有相关关系的两个变量之间的关系形式进行测定,确定一个相关的数学表达式,以便进行估计预测的统计分析方法。根据回归分析方法得出的数学表达式称为回归方程,它可能是直线,也可能是曲线。
2.线性回归方程
设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
其中。
3.线性相关性检验
线性相关性检验是一种假设检验,它给出了一个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性水平0.05与自由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果
如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|r0.05,可以认为y与x之间不具有线性相关关系的假设是不成立的,即y与x之间具有线性相关关系。
数学学习方法 技巧
做好作业,讲究规范。
在课堂、课外练习中培养良好的作业习惯也很有必要。在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。抓数学学习习惯必须从高一年级主动抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的培养。
写好总结,把握规律。
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折 经验 是成功的基石。"自然界适者生存的生物进化过程便是的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。善于归纳总结知识间的联系。
学习数学并非我做题就可以取得好的成绩,而是要将精力花在归纳总结上。特别对课本或课堂上出现的例题,只要善于总结,就可以了解这一小节数学内容有哪几种题型,每种题目的一般解法和思路是什么,从而提高运用所学知识分析解题的能力。同时,每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能。
注重 反思 ,提升能力
学习要注重反思,练好悟性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。数学学科必须培养运算能力、 逻辑思维 能力、空间 想象力 以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。数学能力只有在数学思想方法不断地运用反思中才能培养和提高。数学内容的巨变和学习方法的落后,在学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,千万不能让问题堆积如山,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题,解决问题的能力,这就是的悟性。
学会发现问题,并重视质疑在学习中常看到成绩好的同学,总是有很多问题问老师。提出疑问不仅是发现真知的起点,而且是发明创造的开端。提高学习成绩的过程就是发现,提出并解决疑问的过程。大胆向老师质疑,不是笨的反映,而是在追求真知、积极进取的表现。在听课中,不但要“知其然”,还要“知其所以然”,这样疑问也就在不断产生,再加以分析思考使问题得以解决,学习也就得到了长进。
苏教版高一数学知识点相关 文章 :
★ 各年级数学学习方法大全
★ 2021高一必修二数学知识点总结
★ 苏教版高中必修二数学知识点
★ 各年级数学学习方法大全
★ 学习方法指导与技巧总结
★ 高中数学奇函数偶函数知识点
★ 中小学各学科学习方法总结
★ 最好的学习方法总结和学习方法指导
★ 备考资料