CTO王海峰谈百度AI的2020:打造AI新型基础设施、云智一体加速产业智能化
转眼间,2020已经接近尾声。这一年,有很多变化,也有许多不变的信念与坚守。12月30日,百度发布《百度AI的2020》,以一篇万字长文回顾与总结过去的一年。CTO王海峰总结百度AI在2020年的三大特色:持续 探索 科技 前沿、打造AI新型基础设施、云智一体加速产业智能化。
王海峰表示:“世界的2020,是充满不确定性的变局之年;中国的2020,是团结一心、共克时艰、于变局中开新局的希望之年;百度AI的2020,是坚定信念,拥抱变化,践行“ 科技 为更好“的实干之年。
回望2020年,抗击疫情中,百度AI第一时间贡献了 科技 抗疫、保护生命安全的温度和力量;复工复产和高质量发展中,百度AI是促进创新、构建新格局的新动能;我们的工作和生活中,百度AI在你搜索的每一条信息和知识里、在地图导航的叮咛声中、在国际会议的同传字幕上、在工厂的无人质检设备上、在自动驾驶出租车持续拓展的里程上……百度AI在我们身边每个角落,让我们的工作更高效、生活更便捷。
2020,百度AI的实干之年继续自己的特色之路:持续创新突破, 探索 科技 前沿;自主可控、开源开放,夯实软硬一体AI大生产平台,打造AI新型基础设施;云智一体,使能行业,赋能生态,加速产业智能化。”
一些关键的数字可以窥见百度AI的成绩:在 CVPR、ACL、ECCV、NeurIPS、INTERSPEECH等全球顶级人工智能学术会议和权威竞赛上,百度AI问鼎冠军30多次,论文收录260多篇,持续彰显AI技术领军实力;在人工智能专利申请量和授权量方面,百度以9364件专利申请和2682件专利授权处于中国第一位;今年,百度再次入选《麻省理工 科技 评论》“50家聪明公司”;截止目前,百度共获得了来自政府、行业协会、媒体等多方机构颁发的100多个奖项,例如2020世界人工智能大会最高奖项SAIL奖。
除了这些最直接的数字,《百度AI的2020》还全面展现了其在AI新兴基础设施、产业智能化、AI服务 社会 和人才培养等方方面面的进展和成果。
AI 新型基础设施
2020年,百度AI的四个剪影,描绘出AI进入工业化大生产,成为坚实的AI基础设施。
第一个剪影,百度大脑6.0勾勒的核心技术自主创新。2020年,百度大脑核心技术突破“知识增强的跨模态深度语义理解”,理解真实世界的复杂场景。另一方面,百度大脑“软硬一体AI大生产平台”升级为AI新型基础设施,更高效地支持AI工业化大生产,帮助产业智能化发展提速。
第二个剪影,百度飞桨持续创新,繁荣的开源生态支持产业发展。飞桨是中国首个开源开放、功能完备、自主可控的产业级深度学习 平台。飞桨开源框架V2.0RC版本,带来“编程一致、动静统一”的全新开发体验,硬件生态伙伴达到20家,适配或者正在适配的芯片/IP型号29种,提供自主可控的坚实底座,加速AI产业生态构建。飞桨凝聚超过265万开发者,训练34万个模型,服务10万家企业。
第三个剪影,前沿技术描绘的未来蓝图。百度发布了国内首个云原生量子计算平台量易伏Quantum Leaf,提供QCompute等量子开发套件,缩短量子编程全生命周期,实现量子工具链闭环。百度超级链拥有链内并行技术、立体网络等425项技术专利,实现单链8.7万TPS 的行业领先网络性能,并作为国内首个项目捐赠给开放原子开源基金会。百度人工智能还与生物计算和病毒研究相结合,百度开源了线性时间算法Linearfold,可将此次病毒全基因组二级结构预测从55分钟缩短至27秒,提速120倍。此外,百度推出的全球首个mRNA疫苗基因序列设计算法LinearDesign,能在16分钟内大大提升疫苗设计的稳定性和蛋白质表达水平,从而有效解决了mRNA疫苗研发中最重要的稳定性问题,加速疫苗研发速度。
第四个剪影,云计算铺设的智能经济“高速公路”。今年,百度智能云在业内率先提出AI-Native的云计算架构,发布新一代基础架构百度“太行”,自主研发的云原生数据库产品百度智能云Gaia(盖亚),便捷高效支持产业的智能应用。此外,混合/专有云平台ABC Stack全部支持国产化服务器和操作系统,ABC Stack行业版和企业版重点加持百度自研昆仑AI芯片,实现真正的国产化智能云。
四个“剪影”交叠,“百度AI新基建版图”逐渐清晰。百度正在依托包括百度大脑、飞桨、智能云、数据中心等在内的新型AI基础设施,推动智能交通、智慧城市、智慧金融、智慧能源、智慧医疗、工业互联网和智能制造等领域实现产业智能化升级。
AI 描绘“万物智能”,产业智能化更加澎湃
新冠肺炎疫情对全球经济带来巨大冲击,也让 社会 各界充分意识到人工智能等新兴 科技 的重要价值。百度AI一方面通过搜索、地图、输入法、小度、Apollo等产品和平台服务大众,让生活更简单、更便捷;另一方面通过百度AI to B的重要承载者和输出者——百度智能云,为各行各业大规模输送百度的AI技术成果与平台能力,支持产业智能化升级,加快智能经济的到来。
百度AI助力 搜索体验持续优化,更好地连接信息与服务。 百度移动生态是中国领先的以信息和知识为核心的移动生态,在AI技术的加持下,百家号、智能小程序和托管页三大支柱迅速发展成为国内领先的内容和服务接入平台。基于自然语言处理、知识图谱、语音、视觉、深度学习等AI技术能力,百度搜索也在持续智能化。
新一代人工智能地图—百度地图让出行更简单。 2020年,百度地图坚守AI优势和创新能力升级出行服务,上线熟路导航模式、车道级导航功能、AI室内通和红绿灯倒计时等,已成为国民信赖的权威出行平台。目前,百度地图90%以上的数据生产环节实现AI化,全景地图覆盖全国95%以上的城市,覆盖里程超过300万公里; 语音交互场景也实现迅速增长,百度地图智能语音助手用户量已破4亿。
百度地图AI室内通
AI 全面赋能输入法,市场份额与活跃用户量跃居行业领先。 百度输入法市场份额与月活跃用户量增势迅猛,目前月活突破6亿;多项AI功能取得重大行业突破,其中语音输入能力持续突破,并成为业内首个日均语音请求量破10亿次大关的输入法产品,语音识别准确率达98.6%,同时实现离线中英自由说升级突破,百度输入法目前已成为语音输入渗透率最高的第三方手机输入法;手写输入持续升级,手写识别准确率提升至96%。
小度“破圈”,拓宽智能助手的应用边界。 小度今年发布了搭载百度鸿鹄芯片的小度智能音箱2红外版、主打在线少儿教育的小度教育智能屏和小度智能早教机、以及超高性价比的智能屏入门级产品小度智能屏Air、随身场景首款新品小度真无线智能耳机和满足每一位家庭成员更多元细分需求的小度智能屏X10,让小度在更多场景和人群实现了“破圈”,加速人工智能硬件的市场普及,拓宽智能助手的应用边界。
Apollo 自动驾驶超过十项中国第一,技术实力领跑行业。 百度Apollo不断刷新智能出行领域的“高难度”。在“万物智能——百度世界2020”大会上,百度完成全球首次全无人驾驶直播,即人工智能系统在没有车内安全驾驶员的情况下独立驾驶。百度先后在长沙、沧州、北京开放Apollo Go自动驾驶出行服务。智能车联产品 Apollo小度车载已进入上百万辆智能 汽车 。百度发布了国内外首个车路行融合的全栈式智能交通解决方案“ACE 交通引擎”,扎根中国智能交通新基建,目前已获近20个城市的智能交通新基建订单。
壮“智”凌云,百度智能云加速产业智能化。 2020年在疫情、全球经济局势变化的背景下,以 科技 创新推动产业发展,提升经济质量的效益和核心竞争力成为关键。百度智能云融合了云计算、百度大脑、大数据等百度核心技术,发布“以云计算为基础,以AI为抓手,聚焦重要赛道”的全新战略,推动产业智能化发展,成为新基建大潮中加速AI工业化大生产的关键力量。
百度智慧城市解决方案已在北京海淀、重庆、成都、苏州、宁波、丽江等10+省市落地应用;智慧金融服务近200家金融客户,构建了超过30家的合作伙伴生态,跻身中国金融云解决方案领域第一阵营;百度智慧医疗“灵医智惠”已经服务300多家医院和1500家基层医疗机构,辅助数万名医生,惠及超过千万患者;智能制造覆盖14大行业,100多家企业,30多个合作伙伴,触达50多类垂直场景,在3C、 汽车 、钢铁、能源等行业已规模落地;百度智慧能源已覆盖电网、发电、新能源、清洁能源、石油、化工等场景,携手国家电网、南方电网智能化升级;发布企业智能应用“百度如流”,构建 AI 时代办公流水线,打造新一代智能工作平台。
服务 社会 与人才培养
没有一个冬天不可逾越,没有一个春天不会来临。2020年,面对突如其来的疫情,百度AI第一时间加入抗疫防疫的战斗中。百度AI出现在中国疾控中心,助力10个小时就完成了北京四个病例样本的全基因组测序;出现在地铁高铁等公共场所,解决佩戴口罩及帽子情况下的体温检测;出现在基层随访的电话中,智能外呼平台一秒呼出1500个电话辅助排查及通知,让基层防控人员有时间坐下来吃一口热饭;AI问诊每日调用近万次,机器人战疫解决方案落地30多家医院、机构,百度地图迁徙大数据平台、实时路况平台为国家防控部署提供参考,发热门诊地图、疫情小区地图、核酸检测机构查询等功能,从不同角度帮助抗疫防疫更快速、更便捷。
百度秉承“ 科技 为更好”的理念,践行企业公民的 社会 责任。百度最早将人工智能技术用于寻人,截止到2020年12月,百度AI寻人已经累计帮助了近12000个家庭团聚。百度AI持续支持文化保护、动物保护,例如百度和国际爱护动物基金会IFAW合作,推出全球首个利用人工智能技术打击野生动物制品非法贸易的平台。
人工智能的快速发展和产业智能化浪潮加剧了全球AI人才的紧缺。面向高校,百度提供了全套教学资源包、实训平台和亿元算力支持,并与高校共建课程体系;目前已举办13期高校师资培训班,培养了1800多位AI教师,支持200余所高校开设AI学分课。前不久,百度飞桨的“大航海”计划公布,其中的“启航”部分面向高校AI人才培养:未来三年,百度飞桨将投入总价值5亿元的资金与资源,支持全国500所高校,重点培训5000位高校AI教师,与高校联合培养50万AI未来人才。
面向未来
2020年,世界格局不断变化。正如百度CTO王海峰所言:“立足新发展阶段,以新理念建新格局, 科技 创新是关键。百度AI的2020,与时代共前行。”
学习人工智能AI需要哪些知识?
需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言,比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
拓展资料:
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
参考资料:百度百科—人工智能:计算机科学的一个分支
现在新基建这么火,浪潮AI是怎样推动“新基建”建设的?
在智能时代,AI算力已经成为衡量社会智能化、数字化的重要指标,现在正往AI产业化和产业AI化方向发展。智算中心是新基建的一部分,可以为智慧时代提供源源不断的计算力。为此,浪潮AI一直专注于智算中心的发展,持续打造敏捷高效的AI基础设施,引领智算中心新基建建设,并携手各行各业,释放AI技术价值,驱动智慧时代的变革发展。比如,浪潮AI围绕智算中心生产算力、聚合算力、调度算力、释放算力这四大关键作业环节,打造了全栈AI能力,以提供坚实的人工智能基础设施支撑。
AI基础知识 | 基础设施有哪些?
我们知道了基础设施是人工智能产品得以存在的原始基础,那么有基础设施有哪些呢?
传感器是一种物理装置或生物器官,能够探测或感受外界的信号、物理条件或化学组成,并将探知的信息船体给其他装置或器官,比如人的皮肤能感觉到冷热、湿润、干燥,感受器将这些信号传输给大脑,大脑再指令人做出加衣减衣喝水开窗通风等的行为。
传感器的作用是将一种信号模式转换成另外一种信号模式。传感器如何分类呢?
按照不同的领域,传感器分为以下类型:压力传感器、温度传感器、PH传感器、流量传感器、液位传感器、超声波传感器、浸水传感器、照度传感器等等,传感的种类繁多,主流传感器可以分为以下几种:
(1)生物传感器
它是将各类型的生物响应转化成电信号的分析设备。目前生物传感器主要应用于医疗保健领域、食品检测领域、环江检测领域等
(2)光敏传感器
它是将光信号转化为电信号的传感器,可以理解为模拟人的视觉能力,图像传感CCD、CMOS、人体感应灯、人体感应开关、光控开关、手机屏幕灵度调节等,都是光敏传感器的应用实例。
(3)声音传感器
声音传感器就可以理解为人的AI产品的耳朵。常见的走廊声控灯就用到了声音传感器。
(4)化学传感器
它对各种化学物质敏感,并将其浓度转化为电信号,是AI产品的“鼻子”。目前化学传感器被广泛应用于大气污染监测、矿产资源的探测、气象观测、工业自动化、农业生鲜保存等领域。
总体来讲,目前传感器主要应用于四类人工智能产品,分别是:可穿戴应用、高级辅助驾驶系统、健康监测、工业控制。
随着图像识别、语音识别、搜索/推荐引擎等深度学习在应用中其价值得到了广泛的认可,其过程的两个关键环节——训练和推断需要强大的计算能力,因此,芯片已经成为AI领域建立竞争壁垒的关键。
AI芯片有哪些类别呢?按照用途可以分为以下三类:模拟训练、云端推断、设备端推断
(1)模拟训练环节的芯片
这个过程由于要处理海量的数据和复杂的深度神经网络,因此需要GPU来提高深度模型的训练效率,与CPU相比,GPU具备强大的并行计算能力与浮点能力,还能提供更快的处理速度、更少的服务器投入和更低的功耗。除了PGU外,谷歌提供的TPU也能提供训练环节的深度网络加速能力。
(2)云端推断的芯片
目前主流的AI应用需要通过云端提供服务,将采集到的数据传到云端服务器,再服务器的、CPU、GPU、TOPU出路推断任务,然后再将处理结果返回终端。所以,是将推断环节放在云端。
(3)终端设备的芯片。
也可称为嵌入式设备的芯片,比如智能手机、智能安防摄像头、机器人等设备就是采用这类芯片。
按定制化程度划分,又可以分为通用芯片、半定制化芯片(FPGA芯片)、全定制化芯片(ASIC)。
3、基础平台
(1)大数据技术
大数据技术是人工智能的前提,而大数据的目标只有一个——从海量数据中挖掘价值。
(2)云计算技术
根据美国国家标准与技术研究院的定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需很少的管理工作,或与服务上进行很少的交互。
云计算技术大大减少了企业的经济消耗。
人工智能发展的关键是什么?
人工智能作为新一轮科技革命的通用技术,将对经济体系产生重要而深远的影响,对促进经济高质量发展具有重要意义。
目前,人工智能产业发展的基础相对薄弱。数据安全、道德、收入分配、技术泡沫和区域空间等也面临着严峻挑战。
这些挑战不仅包括人工智能本身的缺陷,还包括人工智能发展带来的社会和经济问题。提前规划并妥善解决这些问题是推动人工智能深入发展的关键。