专升本数学考点
专升本数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
高数一包括:高等数学、线性代数和概率统计;高等数学占60%,线性代数20%,概率论20%。
高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
专升本高数在出题上区别于普通高校的期末考试题及其他测试,也就是说每道题都只考单独的一个知识点,不具有综合性,题量大,但题目简单,只要你学会了一个知识点,就能保证会做一道题。
专升本数学所有考点分为8大模块:
第一模块:函数、极限和连续。包括四个内容:(1)高数主要研究对象--函数 (2)研究工具--极限 (3)无穷小量、无穷大量 (4)函数的连续性。
第二模块:一元函数的微分学。重要内容:(1)导数与微分 (2)微分中值定理与洛必达法则 (3)一元函数求导 (4)函数的单调性与极值。
第三模块:积分分为:定积分与不定积分。解不定积分或者定积分的方法:(1)直接法 (2)分布积分法 (3)换元法。
第四模块:常微分方程 分为:一阶微分方程、高阶微分方程和二阶线性微分方程;一阶微分方程考的比较多。
第五模块:向量代数、空间解析几何。过渡章节,为后面学习二元函数的微积分打基础。
第六模块:多元函数的微分学。多元微分(多元函数求偏导)和(复合函数和隐函数的微分法)、(多元函数的极值应用)。
第七模块:多元函数积分学重点掌握二重积分和曲线积分。
第八模块:无穷极数 工程中的近似计算会用到。包括:竖向极数和幂级数。
成考专升本高等数学复习重点是什么?
一、成人高考专升本高数(一)
复习重点是看书。高数(一)内容较多,考生复习时不要着急,要找好重点:一元微积分、空间解析几何、多元函数微积分等七章节内容。复习要针对自己的薄弱章节重点复习。
考生需注意的是:从往年的考试情况来看,一元微积分章节是高数(一)的基础内容,考生要重点掌握。
二、成人高考专升本高数(二)
复习时要抓重点章节。考试时难题并不多,命题方式也有规律可循。
考生需注意的是:从近年的考试情况来看,一元微分学主要考查的是导数求解,多元微分考查的内容是偏导数等,只要考生认真学一般就能掌握,所以较容易得分。
高数(二)整体难度和所占分值比例来看,一元函数、导数、微积分、一元函数积分这部分的分值约占全卷三分之二,考生要集中对这些章节的公式进行掌握。
对于计算题,一定要搞清楚题中所涉及的公式的具体含义,搞清楚为什么用这个公式而不用那个公式,这样就可以避免原则性错误;对于案例分析题,一定要理解答案,不要死记硬背,同时要注意把握住答案中的要点。
考生一定要注意及时调整自己的心态,成人高考的备考是一个漫长的过程,中间我们可能会遇到挫折,也有可能会心烦气躁,在这个时候,考生们可以适当放松自己,来调整自己的情绪。
自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:
考前扫盲,专升本高等数学知识点这些必学?
各位想要专升本的同学们,还不知道专升本数学要考些什么吗?虽然各省专升本考纲都不相同,但有这么一些知识点大家都会考,一定要搞懂它们哦。
1.高数的三大基础计算数学肯定是需要计算的,而高等数学的计算基石就是其最基本的三大计算:求极限、求导、求积分。只要数学还存在,就不可避免它们。
(1)极限计算
极限计算经常出没于各类题型,除了综合题、证明题中较少出现,基本都有它的身影,
是最最基础的计算。
在极限计算中常考的有以下几种:
代入法直接求极限(就是把数直接代进去),无穷小替换求极限(利用等价无穷小来替换化简),抓大头求极限(分式类型极限,分子分母同时抓大头),重要极限(一个公式,真的很重要),洛必达求极限(需要分式上下同时求导)。
极限的计算主要注意两点,一个是根据极限特点选择正确的方法,一是这些方法都是怎么操作的需要记忆。
(2)求导计算
求导计算,部分同学在高中已经接触过,是在高等数学中存在感最强的计算。
在求导计算中常考的有以下几种:
求导的四则运算(就是加减乘除的导,乘除的导有对应的公式),复合函数求导(理解较难运算简单,只要会公式就不怕),隐函数求导(跟着步骤走准没错)。
求导计算的灵魂在于求导公式的记忆,其次各类函数的求导方法也不相同,需要牢记。
(3)积分计算
积分计算是最难的计算之一,它是求导计算的逆过程,很多事情顺着容易逆着就很难了,例如由简到奢和由奢到简。
在积分计算中常考的有以下几种:
凑微分法积分(其实就是复合函数求导的逆过程,但是很难理解),根式换元法积分(跟着步骤走准没错),分部积分法(记好公式就很简单,公式也很简单)
积分计算的灵魂依然是公式的记忆,但是方法的选择也是一大难点,有的时候选择比能力更重要。
2.极限的应用和导数的应用理科三部曲,定义、计算、应用,高数里面对定义的考查相对较少,计算最多,应用次之。
(1)极限的应用
极限应用的必学点是无穷小的比较和连续的充要条件。无穷小比较是无穷小替换求极限的前置知识点,经常考的有比较类型判断(谁跑得更快)、已知比较类型求参数(就是求未知数)。连续的充要条件则考查较为专一,一般只考查连续求参问题(已知连续求未知数)。
(2)导数的应用
导数的应用要说必学点,洛必达算一个(之前提过),函数的极值也算一个,极值最基础的题型是函数求极值(也是跟着步骤走)。
以上知识点是专升本高等数学必学的知识点,大家务必活学活用!
今天小编的介绍就到这里啦,欢迎关注猎考专升本考试网,关注猎考专升本微信公众号:专升本考试指南,及时掌握考试资讯!
考研有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:
专升本高数一的主要考点
专升本高数一的主要考点:
1.知识范围
(1)数列极限的概念
数列 数列极限的定义
(2)数列极限的性质
唯一性 有界性 四则运算法则 夹逼定理 单调有界数列极限存在定理
(3)函数极限的概念
函数在一点处极限的定义 左、右极限及其与极限的关系 趋于无穷 时函数的极限 函数极限的几何意义
(4)函数极限的性质
唯一性 四则运算法则 夹通定理
(5)无穷小量与无穷大量
无穷小量与无穷大量的定义 无穷小量与无穷大量的关系 无穷小量的性质 无穷小量的阶
(6)两个重要极限
2.要求
(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解极限的有关性质,掌握极限的四则运算法则。
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(4)熟练掌握用两个重要极限求极限的方法。
(三)连续
1.知识范围
(1)函数连续的概念
函数在一点处连续的定义 左连续与右连续 函数在一点处连续的充分必要条件 函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算 复合函数的连续性 反函数的连续性
(3)闭区间上连续函数的性质
有界性定理 最大值与最小值定理 介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
1.知识范围
(1)函数的概念
函数的定义 函数的表示法 分段函数 隐函数
(2)函数的性质
单调性 奇偶性 有界性 周期性
(3)反函数
反函数的定义 反函数的图像
(4)基本初等函数
幂函数 指数函数 对数函数 三角函数 反三角函数
(5)函数的四则运算与复合运算
(6)初等函数
2.要求
(1)理解函数的概念。会求函数的表达式、定义域及函数值。会求分段函数的定义域、函数值,会作出简单的分段函数的图像。
(2)理解函数的单调性、奇偶性、有界性和周期性。
(3)了解函数 与其反函数 之间的关系(定义域、值域、图像),会求单调函数的反函数。
(4)熟练掌握函数的四则运算与复合运算。
(5)掌握基本初等函数的性质及其图像。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
定义:从第二项开始,每一项与它前一项的差等于同一个常数,叫做等差数列,常数叫公差。