黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

苏教版一至六年级数学知识框架(苏教版小学数学一到六年级知识点总结大全)

小学一至六年级数学的所有重点(苏教版)

加法,减法,除法,乘法,整数混合运算,小数,分数,方程,体积,统计,图形,正方形的认识,长方形的认识,梯形,三角形,圆形,圆周率,分数混合运算,小数混合运算,表面积,面积,数的认识

小学数学公式:

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径 Ѕ=πr

11、长方体的表面积=(长×宽+长×高+宽×高)×2

12、长方体的体积 =长×宽×高 V =abh

13、正方体的表面积=棱长×棱长×6 S =6a

14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a

15、圆柱的侧面积=底面圆的周长×高 S=ch

16、圆柱的表面积=上下底面面积+侧面积

S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch

17、圆柱的体积=底面积×高 V=Sh

V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圆锥的体积=底面积×高÷3

V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

19、长方体(正方体、圆柱体)的体

1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、 加数+加数=和 和-一个加数=另一个加数

7、 被减数-减数=差 被减数-差=减数 差+减数=被减数

8、 因数×因数=积 积÷一个因数=另一个因数

9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3 、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

时间单位换算

1世纪=100年 1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

1-六年级数学知识归纳。苏教版。

具体见

第一章 数和数的运算

一 概念

(一)整数

1 .整数的意义

自然数和0都是整数。

2 .自然数

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。0也是自然数。

3.计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是

计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4. 数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b

整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或

a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能

被2整除。。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例

如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100

以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数

按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因

数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数

的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数

的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数

1 .小数的意义

把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单

位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2.小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯

小数。

带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是

带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 ……

3.1415926 ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小

数叫做无限不循环小数。 例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,

这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环

节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如:

3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这

个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。

(三)分数

1 .分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位

“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2. 分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于

或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3 .约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

分子分母是互质数的分数,叫做最简分数;把异分母分数分别化成和原来分数相等的同分母分数,;(四)百分数;1.表示一个数是另一个数的百分之几的数叫做百分数;分比;二方法;(一)数的读法和写法;1.整数的读法:从高位到低位,一级一级地读;级的读法去读,再在后面加一个“亿”或“万”字;2.整数的写法:从高位到低位,一级一级地写,哪一;有,就在那个数位上写0;3.小数

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

1 .表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百

分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

二 方法

(一)数的读法和写法

1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个

级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没

有,就在那个数位上写0。

3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在

个位右下角,小数部分顺次写出每一个数位上的数字。

5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母

按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时

按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百

分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位

的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以

万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的

尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。

3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去

掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进

1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4. 大小比较

1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,

就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数

部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质;

当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。

(五) 约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律

(一)商不变的规律

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

(二)小数的性质

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化

1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

3. 小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分

数的大小不变。

(五)分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数 相当于分子,除数相当于分母。

四 运算的意义

(一)整数四则运算

1整数加法:

把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 加数+加数=和 一个加数=和-另一个加数

2整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

加法和减法互为逆运算。

3整数乘法:

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 在乘法里,0和任何数相乘都得0. 1和任何数相乘都的任何数。

一个因数× 一个因数 =积 一个因数=积÷另一个因数

小学一至六年级的数学公式和重要知识点

小学一至六年级的数学公式和重要知识点如下:

一、数学公式。

数量关系计算公式:

1. 单价×数量=总价;2. 单产量×数量=总产量;3. 速度×时间=路程;4. 工效×时间=工作总量;5. 加数+加数=和;6. 一个加数=和-另一个加数;7. 被减数-减数=差;8. 减数=被减数-差;9. 被减数=减数+差;10. 因数×因数=积。

11. 一个因数=积÷另一个因数;12. 被除数÷除数=商;13. 除数=被除数÷商;14. 被除数=商×除数;15. 有余数的除法:被除数=商×除数+余数;一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

二、概念儿歌。

乘法口诀儿歌:

一只青蛙一张嘴,两只眼睛四条腿。两只青蛙两张嘴,四只眼睛八条腿。三只青蛙三张嘴,六只眼睛十二条腿。四只青蛙四张嘴,扑嗵扑嗵跳下水。

年月日的儿歌:

一三五七八十腊(12月)。三十一天永不差。四六九冬(11月)三十整。二月特殊不可忘。平年二月二十八。闰年二月把一加。

认识时间的儿歌:

时针走过数字几,表示时间几时多。要问多了多少分,请你仔细看分针。时针和分针;小小表盘圆又圆,时针分针跑圈圈。分针长,时针短,一个快来一个慢。分针跑完一满圈,时针刚跑一小段。

一个数除几位数儿歌:

看被除数最高位,高位不够多一位。除到被除数哪一位,商就写在哪一位。不够商1就写0,商中头尾算数位。余数要比除数小,这样运算才算对。

小数加减法儿歌:

计算小数加减法,关键对齐小数点。用0补齐末位,便可进行加减。

四则混合运算儿歌:

通览全题定方案,细看是否能简便。从左到右脱式算,先乘除来后加减。括号依次小中大,先算里面后外面。横式计算竖检验,一步一查是关键。

解应用题儿歌:

题目读几遍,从中找关键。先看求什么,再去找条件。合理列算式,仔细来计算。一题求多解,单位莫遗忘。结果要验算,最后写答案。

四舍五入法儿歌:

四舍五入方法好,近似数来有法找。取到哪位看下位,再同5字作比较。是5大5前进1,小于5的全舍掉。等号换成约等号,使人一看就明白。

运算顺序歌诀:

今天不把别的表,四则运算聊一聊。混合试题要计算,明确顺序是关键。同级运算最好办,从左到右依次算。两级运算都出现,先算乘除后加减。遇到括号怎么办?小括号里算在先。中括号里后边算,次序千万不能乱。每算一步都检验,又对又快喜心间。

多位数读法歌:

读数要从高位起,哪位是几就读几。每级末尾如有零,不必读出记心里。其他数位连续零,只读一个记仔细。万级末尾加读“万”,亿级末尾加读“亿”。读数规则永牢记。

多位数写法歌:

写数要从高位起,哪位是几就写几。哪一位上无单位,用“0”顶位要牢记。

多位数大小比较歌:

位数不同比大小,位数多的大,位数少的小。位数相同比大小,高位比起就知道。

有关凑“十”法的:

看到9想到1,看到8想到2。看到7想到3,看到6想到4。看到大数加小数,先把两数换位置。

多位数的大小比较:

多位数大小看位数,位数多的数就大。位数相同看高位,高位数大数就大。

分数大小的比较:

分数大小的比较,分子、分母要记好。分母相同看分子,分子大的分数大。分子相同看分母,分母大的分数小。

列方程解应用题:

列方程解应用题,抓住关键去分析。已知条件换成数,未知条件换字母。找齐相关代数式,连接起来读一读。

计量单位对口歌:

小朋友,快排队,手拉手对单位。看谁说得快又对。人民币单位元、角、分,进率是10要牢记。1元得10角,1角得10分,1元等于100分。米、分米、厘米和毫米。最大单位是千米。

1米=10分米,1分米=10厘米,1厘米=10毫米。米和千米也相临,进率1000是特例。吨与千克还有克,进率1000要牢记。形体单位更容易,相临100是面积,相临1000是体积。

大单位,小单位,大小换算有规律。从大到小乘进率,小数点向右移;从小到大除以进率,小数点向左移。进率是10移一位,进率100移两位,进率1000移三位。以此类推。

分解质因数:

分解质因数,方法是短除。除数是质数,商也是质数。表示的形式很简单:合数=质数×质数

公约数、公倍数与互质数:

公约数,公倍数,关键要把“公”记住。公有的约数叫做公约数,公约数中最大的,就叫最大公约数。如果公约数只有1,它们就叫互质数。公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。

求法有区别,千万别失误。短除只把除数乘,是求最大公约数。除数和商要连乘,是求最小公倍数。

  • 评论列表:
  •  颜于痞唇
     发布于 2023-03-28 11:22:55  回复该评论
  • 已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。加法和减法互为逆运算。3整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.