黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

包含关于机器学习的基本知识的词条

机器学习应该准备哪些数学预备知识

我们知道,机器学习涉及到很多的工具,其中最重要的当属数学工具了,因此必要的数学基础可谓是打开机器学习大门的必备钥匙。机器学习涉及到的数学基础内容包括三个方面,分别是线性代数、概率统计和最优化理论。下面小编就会好好给大家介绍一下机器学习中涉及到的数学基础知道,让大家在日常的机器学习中可以更好地运用数学工具。

首先我们给大家介绍一下线性代数,线性代数起到的一个最主要的作用就是把具体的事物转化成抽象的数学模型。不管我们的世界当中有多么纷繁复杂,我们都可以把它转化成一个向量,或者一个矩阵的形式。这就是线性代数最主要的作用。所以,在线性代数解决表示这个问题的过程中,我们主要包括这样两个部分,一方面是线性空间理论,也就是我们说的向量、矩阵、变换这样一些问题。第二个是矩阵分析。给定一个矩阵,我们可以对它做所谓的SVD分解,也就是做奇异值分解,或者是做其他的一些分析。这样两个部分共同构成了我们机器学习当中所需要的线性代数。

然后我们说一下概率统计,在评价过程中,我们需要使用到概率统计。概率统计包括了两个方面,一方面是数理统计,另外一方面是概率论。一般来说数理统计比较好理解,我们机器学习当中应用的很多模型都是来源于数理统计。像最简单的线性回归,还有逻辑回归,它实际上都是来源于统计学。在具体地给定了目标函数之后,我们在实际地去评价这个目标函数的时候,我们会用到一些概率论。当给定了一个分布,我们要求解这个目标函数的期望值。在平均意义上,这个目标函数能达到什么程度呢?这个时候就需要使用到概率论。所以说在评价这个过程中,我们会主要应用到概率统计的一些知识。

最后我们说一下最优化理论,其实关于优化,就不用说了,我们肯定用到的是最优化理论。在最优化理论当中,主要的研究方向是凸优化。凸优化当然它有些限制,但它的好处也很明显,比如说能够简化这个问题的解。因为在优化当中我们都知道,我们要求的是一个最大值,或者是最小值,但实际当中我们可能会遇到一些局部的极大值,局部的极小值,还有鞍点这样的点。凸优化可以避免这个问题。在凸优化当中,极大值就是最大值,极小值也就是最小值。但在实际当中,尤其是引入了神经网络还有深度学习之后,凸优化的应用范围越来越窄,很多情况下它不再适用,所以这里面我们主要用到的是无约束优化。同时,在神经网络当中应用最广的一个算法,一个优化方法,就是反向传播。

机器学习包括:

机器学习中常用的方法有:(1) 归纳学习符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。(2) 演绎学习(3) 类比学习:典型的类比学习有案例(范例)学习。(4) 分析学习:典型的分析学习有解释学习、宏操作学习。扩展资料:机器学习常见算法:1、决策树算法决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。 2、朴素贝叶斯算法朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。 3、支持向量机算法基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。参考资料:百度百科-机器学习(多领域交叉学科)

机器学习的要素是什么?

我们在深入学习人工智能的时候会走进一个新世界,而这个新世界被称为机器学习。当然,机器学习也被称为人工智能的核心。正是由于这个原因,机器学习逐渐被大家所关注,那么大家知道不知道机器学习的要素是什么呢?下面我们就给大家介绍一下这个问题。

首先,机器学习的三要素简单来说就是模型、策略和算法。那么具体是什么意思呢?模型其实就是机器学习训练的过程中所要学习的条件概率分布或者决策函数。而策略就是使用一种什么样的评价,度量模型训练过程中的学习好坏的方法,同时根据这个方法去实施的调整模型的参数,以期望训练的模型将来对未知的数据具有最好的预测准确度。机器学习中的算法是指模型的具体计算方法。它基于训练数据集,根据学习策略,从假设空间中选择最优模型,最后考虑用什么样的计算方法去求解这个最优模型。

在机器学习界流行的一句话:数据和特征决定了机器学习算法的上界,而模型和算法只是逼近这个上界而已。这说明了一个事实,那就是不过我们的机器学习算法模型的识别效果多么准确,如果没有好的特征的话,也等于做无用功。也就是说,数据和特征确定了以后,算法最好能做到怎么样基本上已经确定了。此时好与坏算法的差别可能就在于谁更接近基于这个数据和特征的效果上限。

而机器学习中也有经验风险与结构风险,在这两种风险中,实际上在真正的常见算法的实现过程中使用的原则是结构风险最小。其中最小化损失函数对应的参数 θ 就叫做经验风险最小化。该策略认为经验风险最小的模型就是最优的模型,也就是minf∈F1NN∑i=1L(yi,f(xi))。在这个式子中,F是假设空间。统计学中的极大似然估计就是经验风险最小化的一个典型的例子。当模型是条件概率分布,损失函数是对数损失函数时,经验风险最小化与极大似然估计等价。虽然在样本数量足够大的情况下,经验风险最小化求解出来的模型能够取得不错的预测效果,但是当训练数据集也就是样本容量比较小时,基于经验风险最小化训练出来的模型往往容易过拟合。

在这篇文章中我们给大家介绍了关于机器学习要素的相关知识,在这篇文章中相信大家已经知道了机器学习的相关知识,希望这篇文章能够更好的帮助大家。

  • 评论列表:
  •  北槐各空
     发布于 2023-03-30 10:03:19  回复该评论
  • 机器学习应该准备哪些数学预备知识我们知道,机器学习涉及到很多的工具,其中最重要的当属数学工具了,因此必要的数学基础可谓是打开机器学习大门的必备钥匙。机器学习涉及到的数学基础内容包括三个方面,分别
  •  辙弃债姬
     发布于 2023-03-30 12:02:59  回复该评论
  • 获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。参考资料:百度百科-机器
  •  双笙鸠魁
     发布于 2023-03-30 02:41:26  回复该评论
  • 机器学习中涉及到的数学基础知道,让大家在日常的机器学习中可以更好地运用数学工具。首先我们给大家介绍一下线性代数,线性代数起到的一个最主要的作用就是把具体的事物转化成抽象的数学模型。不管我们的世界当中有多么纷繁复杂,我们都可以把它转化成一个向量,或者一个矩阵的
  •  听弧蔚落
     发布于 2023-03-30 05:38:58  回复该评论
  • 我们主要包括这样两个部分,一方面是线性空间理论,也就是我们说的向量、矩阵、变换这样一些问题。第二个是矩阵分析。给定一个矩阵,我们可以对它做所谓的SVD分解,也就是做奇异值分解,或者是做其他的一些分析。这样两个部分共同构成了我们机器学习当中所需要的线性代数。然后我们说一下概率统计,在评价过程中,我

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.