六年级数学下册一、二单元知识点归纳整理
将懒散收起,背好书包,为人生的成功努力,对暑假说再见,奔赴课堂,为明日的辉煌读书,开学日,整装待发,带好自信,冲向知识的海洋,开拓人生的辉煌!下面是我为大家整理的六年级数学下册一、二单元知识点归纳,一起来看看吧。
六年级数学下册一、二单元知识点归纳整理1
第一单元
负数
1.负数:在数轴线上,负数都在0的(左侧),所有的负数都比自然数小。
正数:大于0的数叫正数(不包括0)
(0)既不是正数,也不是负数,它是正、负数的界限。 第二单元
圆柱和圆锥
1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图: 当沿高展开时展开图是(长方形); 这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。这个长方形的面积等于(圆柱的侧面积),因
为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高 当底面周长和高相等时,沿高展开图是(正方形);当不沿高展开时展开图是平行四边形。
4、圆柱的侧面积:圆柱的侧面积=底面的周长×高, 用字母表示为:S侧=Ch。
h=S侧÷C
C= S侧÷h
S侧=∏dh=2∏rh
5、圆柱的表面积:
圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2 =Ch+∏(C÷∏÷2)×2 =∏dh+∏(d÷2) ×2 =2∏rh+∏r×2
(计算时最好分步使用公式,以免出现计算错误。)
6、圆柱表面积在实际中的应用: 无盖水桶的表面积=侧面积+一个底面积
油桶的表面积=侧面积+两个底面积
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池 侧面积+两个底面积:油桶、米桶、罐桶类
7、圆柱的体积:V=Sh h=V÷S S=V÷h V=∏rh (已知r)
V=∏(d÷2) h (已知d)
V=∏(C÷∏÷2) h (已知C)
8、把一个圆柱体切分成若干份拼成一个近似的长方体,在这个过程中,形 状发生了变化,
体积没有发生变化。表面积增加了2rh.
9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
10、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
11、圆锥的体积:圆柱的体积等于和它等底等高的圆锥体积的3倍,反之圆锥的
体积等于和它等底等高的圆柱体积的三分之一。V锥=1/3 V柱=1/3 Sh
V锥= 1/3 ∏rh V锥= 1/3 ∏(d÷2)h V锥= 1/3∏(C÷∏÷2)h
12、圆柱与圆锥的关系:
(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。
(3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。
13、生活中的圆锥:沙堆、漏斗、帽子。
典型题:
1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的∏倍,
即h=C=∏d,它的侧面积是S侧=h
2、 圆柱的底面半径扩大2倍,高不变,表面积扩大2倍,体积扩大4倍。
3、 圆柱的底面半径扩大2倍,高也扩大2倍,表面积扩大4倍,体积扩大8倍。
4、圆柱的底面半径扩大3倍,高缩小3倍,表面积不变,体积扩大3倍。
5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是
( )立方厘米,圆锥的体积是()立方厘米
列式为:48÷(3+1)或48÷(1+ 1/3)
6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。
求圆锥体积列式为:24÷(3—1)或24÷(1— 1/3)
7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是()厘米。
V柱=V锥 Sh= 1/3Sh 2=1/3h h=2÷1/3 h=6
六年级数学下册一、二单元知识点归纳整理2
1.1 整数和整除的意义
1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,??,叫做整数
2.在正整数1,2,3,4,5,??,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数
3. 零和正整数统称为自然数
4.正整数、负整数和零统称为整数
5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2 因数和倍数
1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身
1.3能被2,5整除的数
1.个位数字是0,2,4,6,8的数都能被2整除
2.在正整数中(除1外),与奇数相邻的两个数是偶数
3.在正整数中,与偶数相邻的两个数是奇数
4.个位数字是0,5的数都能被5整除
5. 0是偶数
1.4 素数、合数与分解素因数
1.只含有因数1及本身的整数叫做素数或质数
2.除了1及本身还有别的因数,这样的数叫做合数
3. 1既不是素数也不是合数
4.奇数和偶数统称为正整数,素数、合数和1统称为正整数
5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数
6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数: 树枝分解法,短除法
1.5 公因数与最大公因数
1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数
2.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数
3.如果两个数是互素数,那么这两个数的最大公因数是
六年级数学下册一、二单元知识点归纳整理3
一、负数:
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
四、统计
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2、通过“抽屉原理”的灵活应用感受数学的魅力。
六、整理和复习
1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
(一)数的读法和写法
1、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12。543亿。
2、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。
3、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的`前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。
4、大小比较
(1)比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
(2)比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……
(3)比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化
1、小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
2、分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
3、一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。
4、小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5、百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6、分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
7、百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除
1、把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。
3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4、成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。
(五)约分和通分
约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
小数
1、小数的意义
把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、 0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7 、 25.3 、 0.23都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 …… 3.1415926 ……
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 …… 0.0333 …… 12.109109 ……
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 ……的循环节是“ 9 ”,0.5454 ……的循环节是“ 54” 。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111 …… 0.5656 ……
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 ……
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777 ……0.5302302 ……
分数
1、分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1、表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。
比例表示两个相等的式子叫做比例。在比例里,两个外项的积等于两个内项。这叫做《比例的基本性质》
根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项。求比例中的未知项,叫做解比例
如:x:320=1:10 10x =320×1 x =320÷10 x =32
六年级数学下册的知识
第二单元百分数二
(一)、折扣和成数
1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,
六折五=6。5/10=65/100=65﹪
解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80﹪
商品现在打六折五:现在的售价是原价的65﹪
2、成数:
几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪
八成五=8。5/10=85/100=80﹪
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪
今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪
(二)、税率和利率
1、税率
(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:
应纳税额=总收入×税率
收入额=应纳税额÷税率
2、利率
(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:
利息=本金×利率×时间
利率=利息÷时间÷本金×100%
(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:
税后利息=利息—利息的应纳税额=利息—利息×利息税率=利息×(1—利息税率)
税后利息=本金×利率×时间×(1—利息税率)
购物策略:
估计费用:根据实际的问题,选择合理的估算策略,进行估算。
购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案
学后反思:做事情运用策略的好处
高一必修一数学第二单元知识点:函数与方程
方程的根与函数的零点
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
七年级下册数学第二单元知识点整理归纳
七年级下册数学第二单元知识点整理归纳1
相交线与平行线
1.同一平面内,两直线不平行就相交。
2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
4.垂直三要素:垂直关系,垂直记号,垂足
5.垂直公理:过一点有且只有一条直线与已知直线垂直。
6.垂线段最短;
7.点到直线的距离:直线外一点到这条直线的垂线段的长度。
8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。
9.平行公理:过直线外一点有且只有一条直线与已知直线平行。
10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题
11.平行线的判定。
结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。
七年级下册数学第二单元知识点整理归纳2
平行线的判定第1课时
基础知识
1、C
2、ADBCADBC180°—∠1—∠2∠3+∠4
3、ADBEADBCAECD同位角相等,两直线平行
4、题目略
MNAB内错角相等,两直线平行
MNAB同位角相等,两直线平行
两直线平行于同一条直线,两直线平行
5、B
6、∠BED∠DFC∠AFD∠DAF
7、证明:
∵AC⊥AEBD⊥BF
∴∠CAE=∠DBF=90°
∵∠1=35°∠2=35°
∴∠1=∠2
∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°
∴∠CBF=∠BAE
∴AE∥BF(同位角相等,两直线平行)
8、题目略
(1)DEBC
(2)∠F同位角相等,两直线平行
(3)∠BCFDEBC同位角相等,两直线平行
能力提升
9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8
10、有,AB∥CD
∵OH⊥AB
∴∠BOH=90°
∵∠2=37°
∴∠BOE=90°—37°=53°
∵∠1=53°
∴∠BOE=∠1
∴AB∥CD(同位角相等,两直线平行)
11、已知互补等量代换同位角相等,两直线平行
12、平行,证明如下:
∵CD⊥DA,AB⊥DA
∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)
∵∠1=∠2(已知)
∴∠3=∠4
∴DF∥AE(内错角相等,两直线平行)
探索研究
13、对,证明如下:
∵∠1+∠2+∠3=180°∠2=80°
∴∠1+∠3=100°
∵∠1=∠3
∴∠1=∠3=50°
∵∠D=50°
∴∠1=∠D=50°
∴AB∥CD(内错角相等,两直线平行)
14、证明:
∵∠1+∠2+∠GEF=180°(三角形内角和为180°)且∠1=50°,∠2=65°
∴∠GEF=180°—65°—50°=65°
∵∠GEF=∠BEG=1/2∠BEF=65°
∴∠BEG=∠2=65°
∴AB∥CD(内错角相等,两直线平行)
七年级下册数学第二单元知识点整理归纳3
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足。
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
概率
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;
3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
三角形
1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+bc(ab为最短的两条线段)
②a—b
3、第三边取值范围:a—b
4、对应周长取值范围
若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
5、三角形中三角的关系
(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n—2)
(2)、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
6、三角形的三条重要线段
(1)、三角形的角平分线:
1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心)
(2)、三角形的中线:
1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。(重心)
3、三角形的中线把这个三角形分成面积相等的两个三角形
(3)、三角形的高线:
1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)
3、注意等底等高知识的考试
7、相关命题:
1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
2)锐角三角形中的锐角的取值范围是60≤X90。锐角不小于60度。
3)任意一个三角形两角平分线的夹角=90+第三角的一半。
4)钝角三角形有两条高在外部。
5)全等图形的大小(面积、周长)、形状都相同。
6)面积相等的两个三角形不一定是全等图形。
7)能够完全重合的两个图形是全等图形。
8)三角形具有稳定性。
9)三条边分别对应相等的两个三角形全等。
10)三个角对应相等的两个三角形不一定全等。
11)两个等边三角形不一定全等。
12)两角及一边对应相等的两个三角形全等。
13)两边及一角对应相等的两个三角形不一定全等。
14)两边及它们的夹角对应相等的两个三角形全等。
15)两条直角边对应相等的两个直角三角形全等。
16)一条斜边和一直角边对应相等的两个三角形全等。
17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
18)一角和一边对应相等的两个直角三角形不一定全等。
19)有一个角是60的等腰三角形是等边三角形。
8、全等图形
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
9、全等三角形
1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
10、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
12、利用三角形全等测距离;
13、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
变量之间的关系
一、理论理解
1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180—2x。
2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的.对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三、关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:
a、认真理解图象的含义,注意选择一个能反映题意的图象;
b、从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述。例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等。
九、估计(或者估算)对事物的估计(或者估算)有三种:
1、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数—首数)/次数或相差年数)等等;
2、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3、利用关系式:首先求出关系式,然后直接代入求值即可。
学好数学的方法是什么
1、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、学好数学最基础的就是把课本知识点及课后习题都掌握好。
5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6、数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
10、数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
数学经典学习思维
假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
七年级下册数学第二单元知识点整理归纳4
认识三角形
1、关于三角形的概念及其按角的分类
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。这里要注意两点:
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2、关于三角形三条边的关系
根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。设三角形三边的长分别为a、b、c则:
①一般地,对于三角形的某一条边a来说,一定有|b—c|
②特殊地,如果已知线段a最大,只要满足b+ca,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b—c|
②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
3、关于三角形的中线、高和中线
①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;
③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
快速提高数学成绩的方法
1、掌握正确做题方法
数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。第一,做题要由易到难,第二,做题要先专题后限时模考,第三,做题要学会整理错题,第四,做题要学会分析试题,第五,做题要会猜题。
2、巩固基础知识
掌握初中数学知识点是由浅入深的,只有在掌握了基础知识的前提下,识记理解公式、定理,运用公式、定理分析解决问题,才能对数学问题进一步深化与提高。
3、发现规律
在做题的过程中要多发现规律,不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个。
4、保持好心态
心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。反过来,如果进考场就底气不足,必定会影响自己的发挥。
5、总结梳理,提炼方法。
数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。
三角函数公式
锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
小学四年级数学上学期第二单元知识点
1、大数的认识一定要四位分级
数级、数位和计数单位(表格很重要)分清计数单位和数位
大数的读法(关键是零的读法问题)
大数的写法
数拓展到三个数级
2、四舍五入法
估算,两位数估整十数,三位数估整百数,四位数估整千数。估算是看清计算符号。特别类似1500-500/50,有的人会去先算减法的。
凑整法
这里涉及的应用题有去尾法和进一法。
10个人坐车,每4人一辆车,一共需要几辆车?进一法,剩下2个人还需要一辆车。
每桶水中60千克,一辆载重2吨的卡车最多能装几桶水?去尾法,剩下的20千克的地方不能装60千克的一桶水。
3、面积单位
平方公里(平方千米)、平方米、平方分米、平方厘米、平方毫米
结合长度单位
复习周长和面积
要结合实际,让孩子对基本的长度和面积有概念。
4、重量单位
克、千克和吨
5、容积单位
毫升、升
这一章的难点在于:要结合实际,具体体会数量单位的多少和换算
单位要统一
周长和面积
其实最主要的是确定长和宽(正方形是边长)
1、长方形
面积=长*宽
周长=2*(长+宽)
已经知道面积和长(或宽),求周长或者另一边
长=面积:宽
(宽=面积/长)
周长=2(长+面积/长)=2(宽+面积/宽)
已经知道周和长(或宽),求面积或者另一边
长=周长/2-宽
宽=周长/2-长
面积=长*(周长/2-长)
=宽*(周长/2-宽)
2、正方形
面积=边长的平方
周长=4*边长
边长=面积开方(现在出现的'平方数一般小,可用乘法口诀表算出)
边长=周长/4
长度单位和面积单位
1KM=1000M
1M=10DM=100CM
1DM=10CM
1CM=10MM
1平方公里=1平方千米=1000000平方米
1平方米=100平方分米=10000平方厘米=1000000平方毫米
两数之和一定的时候,相差最小或者相等的时候,积最大。
也就是说,周长相等的长方形和正方形,正方形的面积最大(长方形长和宽相差越小,面积越大)两数积一定时,相差最大的时候,和最大。
六年级上册数学第二单元知识点
数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.下面我给大家分享一些六年级上册数学第二单元知识,希望能够帮助大家,欢迎阅读!
六年级上册数学第二单元知识
一、确定物体位置的条件
在平面上确定物体的位置,首先要确定观测点,然后要找准方向和角度(方位角),最后要确定距离。
二、在平面图上标出物体位置的 方法 :
1、观测点和方位角;
2、从观测点沿着所确定的方向画一条射线;
3、根据单位长度的线段所表示的地 面相 对距离把实际距离换算为图上长度;
4、用直尺画出图上长度,并标出被观测点的位置及名称。
确定物体位置的条件:方向和距离,两个条件缺一不可。
三、位置关系的相对性。
描述两个物体或地点位置关系的时候会有两种方式,如“上海在北京的南偏东约30°的方向上”“北京在上海的北偏西约30°的方向上”。角度不变,方向正好相反。南偏东对应北偏西(不能说成西偏北)
因为东西、南北正好相对,所以东偏南的相对位置是西偏北。
四、描述路线图的方法
先按行走路线确定观测点,再确定行走的方向和路程.即每走一步,都要说清从哪里出发,向什么方向走多远的距离。每走一步,都换一个新的观测点。
五、绘制路线图的方法
1、确定方向标和单位长度
2、确定起点的位置
3、根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为观测点)外,其余每段都要以前一段的终点为观测点。
4、以谁为观测点,就以谁为中心画出"十"字方向标,然后判断下一点的方向和距离。
每画一段路都要重新确定观测点、方向和距离。
北师大 六年级数学 第二单元知识点
分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算。
③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题
(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:
第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”
第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:
①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:
①对应数量÷对应分率=单位“1” 的量
②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:
加数+加数=和
加数=和-另一个加数
被减数-减数=差
被减数=差+减数
减数=被减数-差
因数×因数=积
因数=积÷另一个因数
被除数÷除数=商
被除数=商×除数
除数=被除数÷商
4、绘制简单线段图的方法
分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。
绘制步骤:
①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。
③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。
④问题所求要标出“?”号和单位。
5、补充知识点
分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘整数:数形结合、转化化归
倒数:乘积是1的两个数叫做互为倒数。
分数的倒数
找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。
小数的倒数
普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
分数除法:分数除法是分数乘法的逆运算。
分数除法计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
数学的六大方法技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会 总结 :
“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:
管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。,这可是大考复习时最有用的资料,千万不可疏忽。
六年级上册数学第二单元知识点相关 文章 :
★ 六年级上册数学知识点
★ 六年级上册数学知识点整理归纳
★ 六年级数学上册知识点复习
★ 六年级数学上册知识点总结
★ 六年级数学上册《百分数》知识点总结
★ 六年级数学上册知识人教版
★ 六年级数学期末复习知识点汇总
★ 六年级数学上册知识点复习资料
★ 六年级数学复习要点
★ 小学六年级数学学习方法和技巧大全