黑客业务

怎么联系黑客,黑客联系方式,顶级黑客在线接单网站,网络黑客,黑客技术

高中数学的等差等比所有知识点(高中等差等比数列讲解视频)

等差和等比所有公式!

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)*项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

等差数列的应用:

日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。

若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。

若为等差数列,且有an=m,am=n.则a(m+n)=0。

等比数列:

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1*q^(n-1)

(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)

且任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)若m,n,p,q∈N*,则有:ap·aq=am·an,

等比中项:aq·ap=2ar ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

性质:

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

等比数列在生活中也是常常运用的。

如:银行有一种支付利息的方式---复利。

即把前一期的利息赫本金价在一起算作本金,

在计算下一期的利息,也就是人们通常说的利滚利。

按照复利计算本利和的公式:本利和=本金*(1+利率)存期

高一数学等比数列的前n项和知识点分析

高中数学的等比数列是考试的重点的内容,学生在学习的是会要多花费一些的功夫,下面是我给大家带来的有关于高一数学关于等比数列的知识点的介绍,希望能够帮助到大家。

高一数学等比数列的前n项和知识点

一个推导

利用错位相减法推导等比数列的前n项和:

Sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

两个防范

(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

三种方法

等比数列的判断方法有:

(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N*),则{an}是等比数列.

(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列.

(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.

注:前两种方法也可用来证明一个数列为等比数列.

高一数学等比中项必考知识点

1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题多以基础题为主,解答题多以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题,难度较大。

(1)函数的思想方法

数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。

(2)方程的思想方法

数列这一章涉及了多个关于首项、末项、项数、公差、公比、第n项和前n项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。

高一数学概率练习附答案解析

一、选择题:本大题共10小题,共50分.

1.编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位,每位学生坐一个座位,则三位学生所坐的座位号与学生的编号恰好都不同的概率是()

A.23  B.13  C.16  D.56

解析:编号为1,2,3的三位学生随意坐入编号为1,2,3的三个座位时,1号学生有3种坐法,2号学生有2种坐法,3号学生只 有1种坐法,所以一共有6种坐法,其中座位号与学生的编号恰好都不同的坐法只有2种,所以所求的概率P=26=13.

答案:B

2.小明同学的QQ密码是由0,1,2,3,4,5,6,7,8,9这10个数字中不同的6个数字组成的六位数码,由于长时间未登录QQ,小明忘记了密码的最后一个数字,如果小明登录QQ时密码的最后一个数字随意选取,则恰好能登录的概率是()

A.1105 B.1104

C.1100 D.110

解析:从0,1,2,3,4,5,6,7,8,9中任取一个数字有10个基本事件,恰巧是密码最后一位数字有1个基本事件,则恰好能登录的概率为110.

答案:D

3. 已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是()

A.π4 B.1-π4

C.14 D.π3

解析:如图所示,边长为4的正方形ABCD,分别以A、B、C、D为圆心,都以2为半 径画弧截正方形ABCD后剩余部分是阴影部分.

则阴影部分的面积是42-4×14×π×22=16-4π,

所以所求概率是16-4π16=1-π4.

答案:B

4.(2013•江西卷)集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是()

A.23 B .12

C.13 D.16

解析:从A,B中各任意取一个数,对应的基本事件有:(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种,而这两个数之和等于4的基本事件有:(2,2),(3,1),共2种,故所求的概率为P=26=13.

答案:C

5.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为()

A.12 B.13

C.14 D.23

解析:甲、乙、丙三人中任选两名代表有如下三种情况:(甲、乙)、(甲、丙)、(乙、丙),其中甲被选中包含两种,因此所求概率为P=23.

答案:D

6.(2013•安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()

A.23 B.25

C.35 D.910

解析:从甲、乙、丙、丁、戊5人中录 用3人的所有事件为:甲乙丙、甲乙丁、甲乙戊、乙丙丁、乙丙戊、丙丁戊、乙丁戊、甲丙丁、甲丙戊、甲丁戊,共10种,其中甲或乙被录用包含9个基本事件,故甲或乙被录用的概率为910.故选D.

答案:D

7.若连续抛掷两次骰子得到的点数分别为m, n,则点P(m,n)在直线x+y=4上的概率是()

A.13 B.14

C.16 D.112

解析:由题意知(m,n)的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种情况.而满足点P(m,n)在直线x+y=4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112.

答案:D

8.在面积为S的△ABC的边AC上任取一点P,则△PBC的面积大于S4的概率是()

A.13 B.12

C.34 D.14

解析:如图,在△ABC中,点F是AC边的四等分点,设△ABC的高为AD,△FBC的高为FE,则FE=14AD,

∴S△FBC=14S△ABC=S4,要使△PBC的面积大于S4,则点P需在线段FA上选取,故P=FACA=34.

答案:C

9.(2013•湖南卷)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为12,则ADAB=()

A.12 B.14

C.32 D.74

解析:不妨设AB=1,AD=x,则ADAB=x,由图形的对称性和题意知,点P应在EF之间,EF=12.DE=CF=14,当点P在E点时,BP最大为 x2+916,所以x2+916=1,∴x=74.

答案:D

10.(2013•陕西卷)对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三 等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()

A.0.09 B.0.20

C.0.25 D.0.45

解析:利用统计图表可知在区间[25,30)上的频率为1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为0.04×5=0.2,故所求二等品的概率为0.45.

答案:D

点击下一页分享更多 高一数学必修3概率练习附答案解析

共2页: 上一页

12下一页 本文已影响 人

第Ⅱ卷(非选择题,共70分)

二、填空题:本大题共4小题,每小题5分,共20分.

11.(2013•湖北卷)在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为56,则m=__________.

解析:因为x满足|x|≤m的概率为56,所以由几何概型得,当-m≤-2,即m≥2时,m--24--2=56, 解得m=3;当-m-2,即0≤m2时,m--m4--2=56,解得m=52,不符合0≤m2应舍去.故m=3.

答案:3

12.(2013•重庆卷)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为__________.

解析: 三人站成一排有:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲共6种不同的排法 ,其中甲乙相邻有4种排法,所以甲、乙相邻而站的概率为46=23.

答案:23

13.(2013•新课标全国卷Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.

解析:从1,2,3,4,5中任意取出两个不同的数的基本事件总数为10,其和为5有两个基本事件,所以其概率为0.2.

答案:0.2

14.(2013•福建卷)利用计算机产生0~1之间的均匀随机数a,则事件“3a-10”发生的概率为__________.

解析:设事件A:“3a-10”,则a∈0,13,所以P (A)=13-01=13.

答案:13

三、解答题:本大题共4小题,满分50分.

15.(12分)(2013•辽宁卷)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:

(1)所取的2道题都是甲类题的概率;

(2)所取的2道题不是同一类题的概率.

解:(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.

用A表示“都是甲类题”这一事件,则A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25.(6分)

(2)基本事件同(1),用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=815.(12分)

16.(12分)(2013•新课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(1)将T表示为X的函数;

( 2)根据直方图估计利润T不少于57 000元的概率.

解:(1)当X∈[100,130)时,

T=500X-300(130-X)

=800X-39 000.

当X∈[130,150]时,

T=500×130=65 000.

所以T=800X-39 000,100≤X130,65 000,130≤X≤150.(6分)

(2)由(1)知利润T不少于57 000元当且仅当120≤X≤150.

由直方图知需求量X∈[120,15 0]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(12分)

17.(12分)(2013•湖南卷)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的药物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:

X 1 2 3 4

Y 51 48 45 42

这里,两株作物“相近”是指它们之间的直线距离不超过1米.

(1)完成下表,并求所种作物的平均年收获量;

Y 51 48 45 42

频数 4

(2)在所种作物中随机选取一株, 求它的年收获量至少为48 kg的概率.解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:

Y 51 48 45 42

频数 2 4 6 3

所种作物的平均年收获量为

51×2+48×4+45×6+42×315=

102+192+270+12615=69015=46.(6分)

(2)由(1)知,P(Y=51)=215,P(Y=48)=415.

故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=215+415=25.(12分)

18.(14分)(2013•广东卷)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:

分组(重量) [80,85) [85,90) [90,95) [95,100)

频数(个) 5 10 20 15

(1)根据频数分布表计算苹果的重量在[90,95)的频率;

(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?

(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.

解:(1)苹果重量在[90,95)的频率为2050=25=0.4;(4分)

(2)重量在[80,85)的苹果有55+15×4=1个;(8分)

(3)在(2)中抽出的4个苹果中,有1个重量在[80,85)中,3个在[95,100)中.设“在[80,85)和[95,100)中各有1个苹果”为事件A,则P(A)=36=12.

高二数学等比数列知识点梳理

一般地,如果一个数列[1]从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列(Geometric Sequences)。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。在运用等比数列[2]的前n和时,一定要注意讨论公比q是否为1。

另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,一个正项等比数列与等差数列是“同构”的。

等比中项定义:从第二项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项。

(1)无穷递缩等比数列各项和公式:

无穷递缩等比数列各项和公式:公比的绝对值小于1的无穷等比数列,当n无限增大时的极限叫做这个无穷等比数列各项的和。

(2)由等比数列组成的新的等比数列的公比:

{an}是公比为q的等比数列

1、若A=a1+a2+……+an

等比数列公式

B=an+1+……+a2n

C=a2n+1+……a3n

则,A、B、C构成新的等比数列,公比Q=q^n

2、若A=a1+a4+a7+……+a3n-2

B=a2+a5+a8+……+a3n-1

C=a3+a6+a9+……+a3n

则,A、B、C构成新的等比数列,公比Q=q

2公式性质

(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;

(2)在等比数列中,依次每 k项之和仍成等比数列。

(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。

(5)等比数列中,连续的,等长的,间隔相等的片段和为等比。

(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数。

(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比数列中,首项A1与公比q都不为零。

注意:上述公式中A^n表示A的n次方。

(8)由于首项为a1,公比为q的等比数列的通项公式可以写成an=(a1/q)*q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。

3求通项法

1、待定系数法:已知a(n+1)=2an+3,a1=1,求an构造等比数列a(n+1)+x=2(an+x)

a(n+1)=2an+x,∵a(n+1)=2an+3 ∴x=3

所以(a(n+1)+3)/(an+3)=2

∴{an+3}为首项为4,公比为2的等比数列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3

2、定义法:已知Sn=a·2^n+b,,求an的通项公式。

∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b

∴an=Sn-Sn-1=a·2^n-1

等比等差数列的所有公式是什么?

等比等差数列的公式如下图:

等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。

等比数列的性质:

1、在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N∗)m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。

2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠0){λan}(λ≠0),{1an}{1an},{a2n}{an2},{an⋅bn}{an⋅bn},{anbn}{anbn}仍然是等比数列。

3、在等比数列{an}{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,⋯an,an+k,an+2k,an+3k,⋯为等比数列,公比为qkqk。

4、q≠1q≠1的等比数列的前2n2n项,S偶=a2⋅[1−(q2)n]1−q2S偶=a2⋅[1−(q2)n]1−q2,S奇=a1⋅[1−(q2)n]1−q2S奇=a1⋅[1−(q2)n]1−q2,则S偶S奇=qS偶S奇=q。

5、等比数列的单调性,取决于两个参数a1a1和qq的取值,an=a1⋅qn−1an=a1⋅qn−1。

  • 评论列表:
  •  青迟欢烬
     发布于 2023-04-12 00:05:53  回复该评论
  • m+n=p+q=2k(m,n,p,q,k∈N∗),则am⋅an=ap⋅aq=a2kam⋅an=ap⋅aq=ak2。2、若数列{an}{an},{bn}{bn}(项数相同)是等比数列,则{λan}(λ≠

发表评论:

Powered By

Copyright Your WebSite.Some Rights Reserved.