知识图谱基础(三)-schema的构建
图1是plantdata内的创投schema,主要是为了发掘一级市场的投资和融资构建的schema。该schema主要是去定义需求,哪些数据对创投有用,才往上构建,例如:人物都有身高 体重,但是这些数据对创投来说意义不大,在schema中就不用构建了。
知识图谱的基本组成三要素:实体、属性、关系。实体-关系-实体 三元组;实体-属性-属性值三元组。目前的知识图谱分为两类。一类是开放域的知识图谱,另一类是垂直领域的知识图谱。
知识图谱的构建形式: 自顶向下:先为知识图谱定义好本体与数据模式,再将实体加入到知识库。 自底向上(常用) :从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式。
知识图谱的概念是:知识图谱是自顶向下(top-down)的构建方式。自顶向下指的是先为知识图谱定义好本体与数据模式,再将实体加入到知识库。
对知识的可信度进行量化,通过舍弃置信度较低的知识,保障知识库的质量。1 所解决的问题 知识图谱的内容需要与时俱进,其构建过程是一个不断迭代更新的过程。主要包括概念层的更新和数据层的更新。
知识图谱源于语义网,将自然语言文本中描述的知识按照三元组的方式进行描述与表示,从而让计算机可以进行存储、计算与应用。其主要数据模型是RDF数据模型。由RDFS于OWL提供模式(schema)的描述方法并支持推理。
知识图谱技术的技术流程
知识图谱的构建流程主要包括以下几个步骤:收集数据:收集与知识图谱相关的数据,包括结构化数据和非结构化数据。结构化数据包括数据库、表格等,非结构化数据包括网页、文本、图片等。
垂直领域的知识图谱,比如说金融的,电商的。首先就是要先处理数据。互联网上的数据基本上都是结构化的,非结构化的和半结构化的。结构数据一般就是公司的业务数据。
传统的知识表示方法主要是以RDF(Resource Description Framework资源描述框架)三元组SPO(subject,property,object)来符号性描述实体之间的关系,近年来,以深度学习为代表的表示学习技术也取得了重要的进展。
知识图谱的构建形式: 自顶向下:先为知识图谱定义好本体与数据模式,再将实体加入到知识库。 自底向上(常用) :从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式。
知识图谱技术是人工智能的重要组成部分,其研究的是对人类知识的获取、表示、推理、应用等技术。知识图谱于2012年5月17日被Google正式提出,其初衷是为了提高搜索引擎的能力,增强用户的搜索质量以及搜索体验。
知识图谱有哪些应用?
“知识图谱的应用涉及到众多行业,尤其是知识密集型行业,目前关注度比较高的领域:医疗、金融、法律、电商、智能家电等。
如今,知识图谱已广泛应用于知识工程、人工智能以及计算机科学领域;同时,知识图谱还广泛应用于知识管理、自然语言处理、电子商务、智能信息集成、生物信息学和教育等方面以及语义网之类的新兴领域。
知识图谱在金融领域的应用主要包括量化投资、监管科技、信贷风控、金融数据共享与查询、精准营销等。
知识图谱可以用于很多应用,例如搜索引擎、智能问答系统、虚拟助手等。知识图谱能够显著提高搜索引擎的查全率和查准率,帮助人们更快速地获取所需信息。在智能问答系统中,知识图谱可以用于实现聊天机器人,帮助人们回答各种问题。
知识图谱在金融领域的应用主要包括:风控、征信、审计、反欺诈、数据分析、自动化报告等,本文主要讨论知识图谱在小微风控的应用。 风控是指如何当项目或企业在一定的风险的环境里,把风险减至最低的管理过程。
知识图谱-LSTM+CRF知识抽取实战
keras 本次抽取本质上还是基于LSTM的一个分类问题,至于CRF层,完全是为了保证序列的输出严格性,因为CRF对于预测序列有较强的的限制性,比如B-PRESON后面只能为I-PERSON或者O之类的限制。
知识图谱的核心内容为 三元组。 三元组是以〈主体(Subject),属性(Property),客体(Object)〉形式的词组,例如〈姚明,职业,篮球运动员〉,主体与客体之间,有多对一对多的关系。
知识图谱包含描述抽象知识的本体层和描述具体事实的实例层。本体层用于描述特定领域中的抽象概念、属性、公理;实例层用于描述具体实体对象、实体间关系,包含大量的事实和数据。知识融合是解决知识图谱异构问题的有效途径。
自底向上(常用) :从一些开放链接数据中提取出实体,选择其中置信度较高的加入到知识库,再构建顶层的本体模式。